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Abstract. This chapter deals with the problem of balancing and optimising
the multi-echelon supply chain network of an Australian ASX Top 50 com-
pany which specialises in the area of manufacturing agricultural chemicals. It
takes into account sourcing of raw material, the processing of material, and
the distribution of the final product. The difficulty of meeting order demand
and balancing the plants’ utilisation while adhering to capacity constraints is
addressed as well as the distribution and transportation of the intermediate
and final products. The aim of the presented system is to minimise the time
it takes to generate a factory plan while providing better accuracy and visi-
bility of the material flow within the supply chain. The generation of factory
plans within a short period of time allows for what-if-scenario analysis and
strategic planning which would not have been possible otherwise. We present
two approaches that drive a simulation to determine the quality of the gen-
erated solutions: an event-based approach and a fuzzy rule-based approach.
While both of them are able to generate valid plans, the rule-based approach
substantially outperforms the event-based one with respect to convergence
time and quality of the solution.

1 Introduction

Understanding and managing a company’s supply chain is one of the hard-
est tasks procurement planners and supply chain managers face in today’s
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business environment. Ideally, a supply chain is driven by demands generated
from customers placing orders. An order may include one or many order items
composed of processed and unprocessed raw materials and components. In
addition to the customers’ orders which, generally speaking, draw final prod-
ucts out of the supply chain network (i.e., pull factors), supply chain networks
are often subject to push factors which are caused by suppliers feeding raw
material into the supply chain [1]. In most cases, the supply of unfinished
goods cannot be synchronised with the demand generated at the other end
of the supply chain, or an adjustment is delayed. Suppliers constantly, peri-
odically, or spontaneously deliver raw material or components into the supply
chain network. An arbitrary imbalance is created by customers and suppliers
which the supply chain network tries to even out or trade-off (see Figure 1).
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Fig. 1. Schematic view of multi-echelon supply chain network (3-echelon in this
case)

Reconciling supply and demand by determining the amount of finished
goods to produce becomes a labour-intense and time-consuming endeavour.
It involves sourcing decisions when there are more than one internal or ex-
ternal suppliers of raw material, factory management decisions to define pro-
duction plans and to determine maintenance outages, and decisions on how
to effectively distribute the finished goods within the supply chain and to the
end customer. Generating an optimal plan which takes all the previous con-
siderations into account becomes virtually impossible for human operators
who are in most cases only equipped with spreadsheet tools.

This chapter presents ways to synchronise and reconcile the drivers of
multi-echelon supply chain networks demonstrated on a real-world example
of an Australian manufacturer of agriculture chemicals. Although the model
presented in this chapter aims to represent a specific supply chain model of
a particular manufacturer, the components the network is based on repre-
sent supply chain entities as they can be found in many other businesses.
We present two approaches which generate optimised production and ma-
terial procurement plans. The system spawned off this project is currently
evaluated and fine-tuned, and final completion and total business integration
are expected to be finished in a few months. When deployed, the system
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will facilitate the planning process. The planning includes determining the
production across the supply chain (type and quantity of final and intermedi-
ate products), scheduling trains and trucks, making sourcing decisions based
on contractual obligations, internal supply, and potential supplement deliv-
eries. The operators will have the opportunity to regenerate plans as soon
as the environment changes, obtaining a response within a few minutes. The
prompt generation of plans allows for strategic planning which could not be
achieved by the previous mode of operation. The power of what-if-scenarios
can be harnessed to benefit from early structural decisions of the supply
chain, such as added production, storage or transportation capacities.

This chapter details two approaches on how to balance the output of pro-
ducing entities such as plants and factories with storage facilities like tanks,
stock piles, or silos. The aim is to generate an optimised production plan for
each site including decisions such as sourcing of raw material and production
rate while honouring storage capacity constraints.

Although both approaches employ a simulation as part of the solution eval-
uation, the kind of simulation differs. In the first approach, an Evolutionary
Algorithm (EA) tries to find a sequence of events. An event is defined by
the date it occurs and an impact it has to the simulation state. The events
are stored in a priority queue and executed in chronological order. An event
could for instance cause a material changeover or a wind down of the pro-
duction rate of a plant. An actual simulation only occurs at these discrete
events (Discrete Event Simulation, DES); in between any two adjacent sample
points (events), the system’s state is assumed to be linearly changing, which
means a tank’s level can be inferred at any given time between two sequential
events. In this particular implementation, the reduction of plant’s utilisation
in order to comply with capacity constraints is performed deterministically,
by taking the excess production of a storage and propagating back to its
supplying nodes, reducing their production proportionally to their share of
the excess amount.

The second approach presented in this chapter does not use events to
change the state of the system. As opposed to the previous approach, it tries
to find the underlying rules that will balance the supply chain’s producers
and product changeovers. During the optimisation process, an EA generates a
rule base and compares its performance on the simulation run at a predefined
interval.

The two above approaches are compared in terms of their overall perfor-
mance comprising violation of hard constraints such as storage capacity, total
final product yield at the end of the run, and satisfaction of demand.

This chapter is structured as follows: After this introduction, the descrip-
tion of the problem is presented in detail followed by the description of the
approaches to tackle the stated problem. Experimental results are given in
the following Section 4. Before finishing the chapter with a conclusion and
outlook of future work, the result of a literature review on related problems
is briefly summarised in Section 5.
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2 The Problem

In many industries which base their operations on multi-echelon production
systems, procurement planners and factory operators often face the same sort
of problems when they create production plans for a short or medium term
planning horizon:

• What is the best supplier for raw materials (in terms of reliability, con-
tractual bindings, availability, costs)?

• How much of it should be sourced in a given period?
• How much finished or intermediate product should be produced?
• When is the best time to schedule maintenance outages?

There are many more questions that can be considered. The bottom line
is that the problem is rather complex, involves trade-offs which cannot be
made in isolation, that is disregarding processes that happen further down
the supply chain, and all decisions are heavily interdependent. Applying rule-
of-thumb reasoning will not lead to an optimal or not even to a feasible plan
if hard-constraints such as capacity limits are violated.

In order to understand the complexity of the presented problem and the
manual interaction involved, let us consider the following example: A factory
plan is supposed to be developed that balances the production and storage
capacities of the supply chain presented in Figure 2.

P1
S1

P3

P2
S2

S3

Fig. 2. Simple supply chain example to demonstrate complexity of balancing the
components involved.

The network is composed of 3 plants (P1. . .P3) producing material M1,
M2 and M3 (P1 produces M1, P2 M2, and P3 M3) at a rate of 50 units
per time unit t, and 3 storage tanks (S1, S2, and S3). Assume that all the
tanks have the same capacity of 100 units, and S1 and S3 are already filled
to 80% of their maximum capacity. The planner tries to run the plants as
hard as possible, that is, it is desired to run them on maximum production
capacity. Running P1 hard within a period of t means it produces 50 units
of M1 which are stored into S1. Since there is a constant consumption of
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M1 by plant P3 an overflowing of the tank does not occur. P2 also produces
its material M2 and conveys it into its tank S2. P3 is sourcing its two input
products and converting it at a ratio of 1:1 (which means we obtain 50 units of
M3 at the end of t from P3). Since S3 is already filled by 80 units (assume no
consumption at this point), an excess amount of 30 units has been produced at
the end of the time period. As the excess amount cannot be stored elsewhere,
the production of the plant feeding into S3 has to be reduced.

In this example, a utilisation of 40% would avoid the excess capacity to
be created and storage S3 to contain 100 units at the end of the period.
Winding down the production in P3 however reduces the demand of M1

which is produced by P1. The planner has to go back to the producer of
M1 and also reduce the production rate of this plant, as the material cannot
be stored in S1 (which is also filled to 80% of its capacity). This process of
propagating back the plant utilisation has to be done for every storage facility
that is exceeding its capacity. In this case, only two plants were affected, but
for multi-echelon networks, it can be easily conceived that the amount of work
that has to be done once a storage constraints are violated is enormous. The
dynamics of the environment the plan is going to be implemented in often
force the planners to re-create a plan multiple times (imagine unplanned
outages of production plants as an example).

In essence, the process of creating such a plan can be very labour-intense,
particularly in a real-world dynamically changing environment. Expanding
the planning horizon to generate long-term plans (for instance yearly plans) is
even more prone to change, as uncertainties and the level of their impact have
implications on larger parts of the plan. A benefit of long term planning, the
ability to plan strategically by evaluating what-if-scenarios, becomes virtually
impossible when plans are generated manually. Analysing the impact of an
event and generating a sufficient number of contingency plans is only possible
if the time to generate those plans is very low and involves minimal amount
of user interactions.

The proposed system automates the planning process to the extent that
constraints are entered via an intuitive user interface and a plan is delivered
within minutes after the optimisation process has been started. This allows
for strategic planning as well as a prompt update as soon as new orders are
placed which impact on the production schedule.

3 The Approach

In this section we describe two approaches that we developed to optimise the
supply chain of the given business. Both approaches perform a simulation in
order to determine the quality (or fitness) of the solution. The first approach
generates a sequence of events and applies these to a discrete event simulation
(DES). We call this one “Event-Based Optimisation” approach. A simulation
is performed at any event occurring (next-event time advance [2]). In contrast,
the second approach uses rules to make decisions for factory utilisation and
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sourcing. The “Rule-Based Optimisation” approach uses also a simulation to
evaluate evolved solutions, but advances the time at a fixed interval (fixed-
increment time advance [2]). In addition to the supply chain model being used
and the common parts of the EA, this section describes both approaches in
detail and lists advantages and disadvantages.

3.1 The Supply Chain Model

When modelling a real-world system, careful attention has to be paid to the
level of abstraction of the model. On the one hand, a high level of details
improves the fidelity of the examined properties of the system, but on the
other hand, the simulation process becomes computational expensive which
prolongs the run time of the actual optimisation. A trade-off has to be made
between reflecting as much as possible to draw the required conclusions from
the system and minimisation of details. The model we employ for both of our
optimisation approaches is described as follows:

The supply chain network can be thought of as a directed graph G = (V, E)
with V = {0, . . ., n} as a set of vertices and E = {0, . . ., m} as the set of edges.
Each vertex/node can be of any of the three following types:

1. Plant
2. Storage
3. Switch

Although nodes of different type process material differently, the three node
types have common properties. Each node has a set of predecessors which
they depend on with respect to their source products. These predecessors are
defined by the incoming edges of the vertex. Figure 3 illustrates a very simple
supply chain network. Plant 1 produces two products, stores both of them
in separate storages and Plant 2 converts Product A into Product C which is
finally stored into Storage 3. Note that in this simplified version, Plant 1 has
no predecessors, whereas Plant 2’s predecessor is Storage 2. The conversion
from a raw material into an intermediate or final product can be thought of
as a chemical reaction with arbitrary input and output products.

A switch, the third kind of supply chain node, is not a physical entity,
but it serves to route the material through the supply chain network. Due to
the internal design and the paradigm to keep functional units as simple as
possible, plants and storages are only allowed to source a material from one
predecessor node. In case there is more than one predecessor nodes which
output the same product, a switch has to be inserted which controls the ma-
terial flow (see Figure 4). A switch can either implement a local heuristic to
determine which successor to deliver to or it may be controlled by the opti-
miser which evolves the routing as part of its usual individual reproduction
process (the switch becomes part of an individual’s genotype). An example
for the former may be that Switch A is implemented in a way such that it
always exhausts the capacity of a tank before it starts filling up another tank
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Fig. 3. Supply Chain model showing relationship between supply chain nodes

Plant A Plant B

Storage B

Storage A

Product A

Storage C

Product ASwitch A

Switch B

Fig. 4. Supply Chain illustrating material flow routed by Switches

(see Figure 4, Switch A). The local deterministic heuristic incorporated into
Switch B may reduce the storage’s level evenly draining all tanks at the same
time.

In addition to nodes having predecessors, nodes also contain output buffers
(one per product) in which the products they produce or store and their quan-
tity are temporarily kept. Switches do not contain output buffers, but delegate
requests for material to their predecessors depending on their implemented
routing logic.

The previously described node-predecessor relationship only works for con-
tinuous material flow such as liquids that are pumped from a producing
plant into a storage tank. In many supply chain networks, the distribution
of material is done via transportation means with limited capacity or infre-
quent transportation times (trucks, ships, air planes or railway). Therefore,
an additional property of the edge between two nodes is a schedule defining
the availability of the transportation means and its capacity. Only when the
transportation means is available at the plant or storage, it can empty the
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node’s buffers and store the material temporarily in its own buffer. Plants
either have to shut down or store their products into adjacent tanks at times
at which the transportation means is not available.

Given the supply chain network of the particular business, a simulation
process can be performed that is mostly similar for both optimisation ap-
proaches. The only difference is in the way the decisions are inferred that
change the state of the supply chain network.

Before the simulation is started, the supply chain nodes have to be ini-
tialised and a list of the sample points (event queue) will be created. During
the initialisation process of the nodes, the buffers of some storage entities are
filled to simulate an opening stock. The next step is to determine the points
of the planning horizon at which the system is sampled. These points are the
set of all events that occur during the planning horizon, such as

• Change of availability of a plant (plants may run at reduced run rate due
to partial maintenance or outages).

• Product changeovers.
• Arrival/departure of transportation means travelling between two nodes.

It is of paramount importance to the validity of the simulation to add all
events that cause a discontinuous change of the supply chain network’s state,
that is, a change that causes nonlinearity which would prevent inference of
nodes’ properties in between two adjacent sample points, to this event queue.
If desired, additional sample points can be added to verify the result of the
simulation.

Once the event queue is filled, the nodes are sorted by precedence. Nodes
without predecessors occur first whereas terminal nodes that base their
buffer’s material and quantity on the result of all previous components’ pro-
duction are located last in this list. The next step is to iterate through the
list of predecessors (beginning with the least dependant node) and process
the node. Processing a node breaks down into three steps:

1. Pull resources (raw material, intermediate material, final product, etc)
from predecessor.

2. Apply the conversion rule.
3. Push the converted material into output buffer(s).

The first step is straightforward: Since each node knows about its predecessors
and the material it required, it pulls the maximum amount of this material
from each of its predecessor nodes. Switches forward the call to their pull
method to the appropriate predecessor. Essentially, the pull step boils down
to copying the content of the predecessor’s output buffers and passing it on
to the conversion step.

In the conversion step, the actual business logic for each plant is imple-
mented. If we consider a chemical formula like 1A + 2B → 2C + 1D with
hypothetical elements A, B, C and D, the factory that processes this formula
would source all the material it could get for product A and B and deter-
mine the quantities of the resulting product C and D (taking into account
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the ratio of A:B=1:2). The amount of input material, which has actually
been used during the conversion process, is reduced from the predecessor’s
output buffers to account only for the actual consumption and to determine
overproduction. While switches do not implement a conversion routine, they
pass on the incoming materials to their output buffers.

Finally in the last step, the produced material is stored into its output
buffers to be available for the successor node’s processing procedure. At the
end of the sample cycle, that is, once all nodes have been processed, the simu-
lator captures the state of the system by storing the buffers which contain the
quantity/products tuple for each node. The final buffer capacity allows deter-
mining the plants’ utilisation or storages’ remaining capacity. The simulation
terminates once the planning horizon’s end date is reached.

3.2 Features of the Optimiser

The meta-heuristic used to optimise the supply chain network is a steady-
state EA, that is, only one individual alteration occurs at each generational
step, replacing a parent. EAs are well understood, reliable and they can be
customised to solve a variety of problems of different domains. They have
been applied to other problems of similar level of difficulty and performed
satisfactory. This section recapitulates the general working principle of the
EA and elaborates on the specific implementation used here.

The EA operates as follows: The population contains a number of individu-
als (approximately 100 individuals) which encode a solution in their genotype.
After initialising and evaluating the individuals of the population, the recom-
bination process is started. As part of it, an operator from the set of available
operators is chosen to alter the individual. These operators are application-
specific as their operation strongly depends on the encoding chosen as well as
the particular business problem they try to solve. Some operators may have
the ability to consider certain business constraints to operate in the feasible
search space which reduces the search space and leads to faster convergence.
The specific operators used for both optimisation approaches are explained
in the following sections.

After the operator changed the individual, the new individual is imme-
diately evaluated. A self-tuning procedure compares the fitness value of the
individual before and after the operation and adjusts operator weights ac-
cording to whether the new individual yields a better solution or not. The
weight is taken into account the next time an operator is chosen. In case
an operator performed poorly, it is less likely to be selected for evolving the
next individuals (similar to roulette-wheel selection). After a defined num-
ber of generations, the weights are reset, so dominating operators have to
proof again their performance. This is particularly important if the opti-
miser prematurely converges and the optimisation process gets stuck at a
local optimum. The previously preferred operator would not contribute to



152 S. Schellenberg et al.

improving the solution’s quality which means other (potentially more explo-
rative) operators come into play.

The evaluation procedure uses application-specific measures to determine
the fitness of the individual. For this particular optimisation problem, both
optimisation approaches use an identical fitness evaluation function. Part of
the evaluation is the simulation. Once finished, the system state is evaluated.
The objectives of the optimisation process for supply chains include, but are
not limited to, (a comprehensive list of measures of supply chains can be
found at [3]):

• Maximisation of product yield.
• Minimisation of product changeovers.
• Adherence to a specified product ratio for the remaining planning period.
• Satisfaction of demand.
• Minimising transportation, inventory, backlogging costs.

The optimisation process is terminated once a pre-defined number of genera-
tions is reached or if the search stagnates over a certain period of generations.
The best individual that was found throughout the optimisation process is
returned (keep-the-best strategy [4]).

Both techniques used in this chapter leverage of the same optimisation
engine described in this section (and in fact applications for other customers
do as well). Different business rules are encoded within the individual and as
operators which makes the EA reusable for other optimisation problems.

3.3 Event-Based Optimisation

The event-based optimisation approach tries to determine a sequence of
events that, when applied to the simulation, results in an optimal solution.
Events are defined by the date they occur and the action they perform, i.e.,
the state change they cause to the system. Examples are a changeover event
in a factory which causes a factory to produce a different product, a change
in the factory’s utilisation, a change of the availability of the factory or a
factory specific event such as a cleanout of storage tanks. The event-based
approach has a very shallow hierarchy of representations. From the event se-
quence (which can be understood as the genotype) a conversion into the final
solution is made by means of the simulation.

At the start of the optimisation run, each individual is initialised with a
random sequence of events. The operators alter the event queue in different
ways. They change the type of event (which changes the action they perform)
or the date of their occurrence as illustrated in Figure 5. Some of them insert
a delay at a specific time which causes all subsequent events to be delayed. A
crossover operator randomly determines an event of the event queue of two
individuals and swaps all of the following events with the other individual,
similar to the classical crossover operation for genetic algorithms.
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t1 t2 t3 t4 t5 t6 t7 t8 t9 t10
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(a) Event queue before mutation

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

EA EB EC ED

(b) Mutation operator in action changing date of EC to t3

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

EA EBEC ED

(c) Event queue after mutation. EC now alters the state at t3 according to its
encoded type.

Fig. 5. Timeline of the simulated horizon illustrating the impact of the date muta-
tion operator on the event queue (dashed lines indicate the time events occur, i.e.
when they cause a change of the state of the simulated system).

One part of the evaluation process is to transform the genotype of the
individual (the representation of the solution we apply the operators to) into a
representation that can be evaluated (the other part is to aggregate the fitness
value components). The transformation is done by running the simulation
according to the encoded sequence of events. At each of the event dates, a
simulation is executed which samples the state of the system (e.g., fill level of
storage tanks, excess level, utilisation, amount of raw material sourced, etc).
After the event date, the system state will change non-linearly (for instance,
a different product is produced; a plant shuts down its operation, etc). Once
the first simulation pass is completed a repair function is triggered. Before
the repair, each plant’s produced products are consumed by their subsequent
storages, disregarding the current available storage capacity.

The repair function deterministically winds down the producers (the
plants) in order to balance the production with the available storage ca-
pacity. This process starts at the last storage in the supply chain, i.e., the
one that relies on all of the previous nodes, and works back to the first node
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in the supply chain (i.e., the one without any predecessor nodes). The excess
amount of an overflowing storage is proportionally reduced from the previ-
ous producers in order to determine the appropriate production rate (planned
utilisation). Each time a plant’s utilisation is adjusted, a partial simulation
has to be performed again as the minimised production has implications to
other supply chain nodes downstream in the supply chain network. The ad-
vantage of this deterministic method to compute the utilisation is that these
kinds of events do not fall into the search process and, therefore, decrease it.

On the other hand, this way of adjusting the plant’s utilisation is rather
expensive as the simulation is rerun every time the utilisation is changed.
An optimisation process not honouring the storage constraints, that is, with
disabled repair function, was able to evaluate about 1500 individuals per
minute, whereas a normal optimisation process (repair-enabled) could only
evaluate a maximum of 150 to 200 individuals on the same machine and the
same supply chain network (this comparison of course is not exact as violated
storage constraints result in more raw material being available which skews
the production plan and the obtained product yield).

3.4 Rule-Based Optimisation

The approach proposed in this section is based on a combination of fuzzy logic
and EAs. Rather than directly evolving decisions made during the simulation
of the supply chain (in form of events), rules are generated which drive the
decision making process.

Since this book is mainly about EAs, a very short introduction into Fuzzy
Logic is given in this section. Thereafter, the application of fuzzy logic to the
subject of this chapter, optimising supply chains, is demonstrated and the
particular implementation is discussed by providing examples on encoding
and decoding of the individual’s genotype.

3.4.1 Fuzzy Logic

Fuzzy logic is based on the fuzzy set theory in which values are expressed as
degree of membership rather than crisp inputs like discrete measurements.
If we were to classify the age of a person having two categories (young and
old), classical Boolean logic would either map a given age to young or old.
Let’s say the cut-off point separating old from young would be exactly 40
years of age. In Boolean logic, every person below 40 years would be young,
whereas everyone with an age greater or equal to 40 is classified as old.
Instead, in fuzzy logic, an age can belong to multiple categories (or degrees
of membership). The degree of membership is denoted by a number between
0 and 1. Given two membership functions young and old, a person aged
30 years could be young to the degree of 0.8 and old to the degree of 0.3
(depending on the shape of the membership functions). Fuzzy terms such as
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“age is young” are called linguistic terms (“age” is a linguistic variable and
“young” a linguistic value). Those terms can be combined by Fuzzy-And or
Fuzzy-Or (or other fuzzy operators, or T-Norms [5]) and further extended
to IF-THEN rules of the form “IF age IS old AND health IS bad THEN
health-insurance-premium IS high” (The IF part is called “antecedent” and
THEN part is named “consequent”). Many of these rules can make up a rule
base.

The type of fuzzy logic system (FLS) as it is used for this approach is called
Mamdani-type FSL [6]. The fuzzy inference process can be decomposed into
three major steps. First of all, the crisp input data obtained by measurements
is transformed into fuzzy sets (fuzzification step) by determining the degree
of membership of the fuzzy terms specified in the fuzzy rule applied. The
next step combines the degrees of the fuzzy sets by the given fuzzy-operators
and summarises each term into a rule weight. This rule weight is used to
determine the output of the rule by limiting the shape of the output function.
The last steps, the defuzzification, combines all reshaped output functions
and applies a defuzzification function in order to obtain a crisp output value.
This function is usually the centre of mass or a weighted average function.

3.4.2 Application of FL to SC Optimisation

Translated to our actual problem of generating decisions to drive a supply
chain simulation, the fuzzy rules determine in their consequent part when
to schedule product changeovers (that is which products are produced at
which time) or the utilisation of the factories (utilisation of the facility).
The advantage for using fuzzy logic to encode the rules driving the supply
chain decisions is that these natural language rules facilitate diagnostics and
audit features of the system. A planner controlling the system can deduct the
reasoning of the system by analysing the rule bases which is more intuitive
than the previous event-based approach.

Another downside of the event-based approach is also that the EA has to
find the correct event for each time, albeit the conditions may be similar to
a previous point in the plan at which the correct decision was made. Say a
product changeover has to be triggered every time a storage tank is about to
overflow, as the product is consumed from the overflowing tank as soon as
the changed-over product is produced. This changeover may not be triggered
at another point in time as the EA has not yet generated such an event
at this time. It may or may not randomly generate such an event at the
particular time. The rule-based system however would have had developed a
rule that triggers a changeover upon reaching of maximal storage capacity of
the tank, which means every time the condition holds (storage tank is high),
the changeover is triggered. The application of rules makes the generated
plan become more predictive and coherent. In addition, the underlying logic
can be investigated and manually fine-tuned.
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The individuals that are evolved in the evolutionary process encode the
rule base. We decided to generate the rules by the EA as they may differ
for different settings and different products. Evolving the rule base by the
EA allows adaptation to the current constraints and environment. There are
many other means to combine EAs with fuzzy logic. They differ in the part of
the fuzzy inference system that is subject to the optimisation. Genetic tuning
for instance changes the database (shape or number membership functions,
linguistic terms) of the fuzzy inference system. Other methods evolve the
knowledge base or generate new knowledge base components. An elaborate
taxonomy and survey on methods to combine genetic algorithms and fuzzy
logic systems (GFS) can be found at [7].

A fuzzy rule (consider this example for explanatory purposes: IF Level Of
Tank IS high THEN Utilisation Of Plant is low) of the structure con-
sists of an antecedent part (IF ...) and a consequent part (THEN ...). The
antecedent can contain multiple linguistic terms (Level Of Tank IS high)
which can be combined by different operators (T-Norm). For our purposes,
Fuzzy-And and Fuzzy-Or are sufficient. A linguistic term has two parts, the
linguistic variable (Level Of Tank) and the linguistic value (high). The num-
ber of linguistic values can be arbitrary, but in order to reduce the complex-
ity, we opted for 5 linguistic values and triangle membership functions (see
Figure 7).

The possible linguistic variables are the level of each storage tank, the
currently produced product of a plant and previous utilisation. A set of rules
forms a rule base. For the proposed system, a number of rule bases is created,
one rule base per possible consequent part. Since the linguistic variables for
all the rules of a rule base are the same (that is, all rules in one rule base
pertain to the utilisation of a specific plant), the only additional information

0

1

0 400 800 1200 1600

Very Low Low Medium High Very High

Degree of
Membership

Storage Tank
Fill Level

0.15

0.85

Fig. 6. Overlay of 5 membership functions denoting the fill level of a tank. At a level
of 740l, the tank level is member of the “low” function by 0.15 and member of the
“medium” function by 0.85. For each storage, the parameters for each membership
function are different as the maximum capacity may differ (and hence “very high”
would relate to a different maximal level).
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that needs to be encoded in the chromosome is the linguistic value of the
consequent part. Figure 6 displays the integer number vectors encoding each
rule. A rule base to n rules encoded as sketched in Figure 9: The first index
represents whether the rule is enabled, the second specifies the fuzzy opera-
tion which combines the linguistic terms (Fuzzy-And or Fuzzy-Or) and the
following pairs of integer values contain a pointer to a look-up-table of lin-
guistic variables and linguistic values. The last cell holds the linguistic value
for the rule base’s consequent part.

Enable/disable rule

Linguistic
Variable V1

Linguistic
Value v1

Linguistic
Variable V2

Linguistic
Value v2

Linguistic value
of consequent

Rule Base 1

Rule Base 2

Fig. 7. Encoding the rule bases. Elements in squares are of type integer number and
stand either for booleans or indices in look-up-tables that hold linguistic variables
and values.

3.4.3 Generation of Rules

As in the previous section, the same EA with its self-calibrating capabilities
is employed. The only differences lie in the method of evaluation, that is,
how the simulation is carried out, and the set of operators used to evolve the
individuals (as the encoding of the individuals). The evaluation function itself
is exactly the same. It takes into account the maximal production yield, a
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penalty is deducted in case storage constraints are violated and also a penalty
in case of a delay in providing enough final product to satisfy firmed orders
is applied.

Unlike the event-based optimisation, the rule-based approach samples the
system at pre-defined intervals. At these sample points, all properties of the
simulated system are evaluated and actions are derived from the current
state. These actions are triggered by the rules described above. A rule may
pertain to the fill level of a storage shed and cause a reduction of the feeding
plant upon reaching of a “high” fill level.

Different operators modify the genotype of the individual at each recom-
bination step. A mutation operator randomly changes bits of the genes by
honouring the feasible maximal possible integer number value at the position
in the chromosome. The meaning of such a mutated chromosome changes in
the decoding step which leads to different rules and thus different decisions
in the simulation step (see Figure 8).

2 3 3 -1 4 1

2 3 3 -1 4 4

(a) Mutation of chromosome (before

and after mutation)

Before: IF Level(TankC) IS high

THEN Util.(PlantA) IS low

After : IF Level(TankC) IS high

THEN Util.(PlantA) IS very high

Index Ling. Variable Ling. Term

0 Level(TankA) very low
1 Level(TankB) low

2 Level(TankC) medium full

3 Level(TankD) high
4 Util(PlantA) very high
5 Util(PlantB)

7
. . .

(b) Phenotype decoding

Fig. 8. Impact of mutation on decoded phenotype (‘-1’ means the term is not
considered in the rule)

Another typical operator for genetic algorithms, the crossover operator,
was also adapted and implemented. Two flavours of single point crossover
are employed. One of them cuts individual rules of two parent individuals
into two pieces (at a random crossover point) and swaps its right-hand part
with the other parent. The other crossover operator swaps entire rules at
once by determining again a crossover point and replacing one part with the
parent’s rule set.
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4 Experimental Results

We have tested the two approaches on two identical supply chain networks.
The aim was to maximise production while honouring storage constraints.
The EA was configured to terminate its search after a maximum of 5000
generations, or prematurely if the search would not yield any improvement
within 1000 generations. By virtue of the system, the event-based approach
runs a simulation whenever an event occurs. The rule-based approach was
configured to sample the system at a fixed interval of one day and change
the system state by applying its rules.

Both algorithms were able to generate feasible solutions without violating
constraints. The quality of the averaged solutions of each approach, however,
differed significantly. While the event-based approach managed to fill up the
final product storage shed to 172, 000 tonnes (see Figure 9), the rule-based
approach exceeded this value by 37% (233, 000 tonnes). In addition, the search
procedure of the latter one terminated much earlier (on average at about
1300 generations) while the event-based algorithm used up the full span of
available generational cycles. Another interesting observation is that the time
it takes to evaluate an individual is much less for the rule-based approach
(approx. 800 individuals per minute vs. 150 i/min). This and the premature
termination caused the rule-based approach to find an (even better) solution
after a few minutes of run time only.

As already stated in the introduction of this chapter, the system presented
is applied to a real-world problem and, as such, it is difficult to compare it to
synthetic problems as they are usually used as a baseline in academia. The
only plausible baseline can be obtained by comparing the factory planner’s
schedule and the expected product yield with the schedule generated by the
system. Preliminary test results indicate a high degree of similarity between
human and system generated factory schedules with respect to the length of
product runs (or in other words, the date of scheduled product changeovers)
and accumulated product yield at the end of the planning horizon. Taking
only these few measures into account, one can conclude that the model ad-
equately represents the supply chain. The time it takes to generate a yearly
plan by the planning personnel is tremendous. This means a what-if-scenario
analysis becomes virtually impossible. Unless we deal with strategic what-if-
scenarios, the result of such a scenario would become obsolete by the time it
is obtained. Using the proposed system, a near-optimal plan for an entire year
could be created in less than 10 minutes for the event-based approach and
about 2 minutes for the rule-based approach respectively (carried out on a
standard Dual Core 1.6GHz computer optimising a 5-echelon supply chain).
This allows for what-if-scenario analysis especially for short term planning
horizons.

Another observation worth mentioning is that in some instances, the opti-
miser made decisions that were, by a human operator, hard to justify. These
decisions dealt with production trade-offs that were done early in the planning
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Fig. 9. Total product yield of event-based and rule-based approach (in kilotonnes)

period in order to benefit from an event that happened later with the aim to
increase the overall production. This may be a valid decision with respect to
the evaluation function (higher production means fitter individual), but, since
we deal with a real-world environment, one has to consider the uncertainties
that the future may bear (especially for long-term plans). The future benefit
the optimiser was speculating for may in reality never materialise which would
result in an overall inferior plan (compared to one that would not have made
the trade-off decision in the first place). As a consequence, we introduced a
staged optimisation that partitions the planning horizon in periods which are
optimised in isolation. Once a period has been optimised, the resulting stock
is carried over into the next period serving as opening stock.

We ran a trial to determine the impact of partitioning the optimisation.
To obtain a normalised result we limited each period’s runtime according
to its share on the overall planning horizon. Optimising the whole period
at once took about 8 minutes. For the test case with two periods, a maxi-
mum optimisation time of 4 minutes was allocated for each of the periods.
Essentially, this means we allocated the processing time evenly, as opposed
to allowing the EA to exhaust the maximum of 2000 generations for each
period (in which case the result would be skewed as the search space is only
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half the size, but the same amount of computational resources are applied
to optimise). The simulation was run four times over the whole period and
the planning horizon split in 2, 4 and 8 periods. Figure 10 confirms our ini-
tial assumption. The total yield drops by about 25% when comparing the
optimisation over the entire period to the 8-segments-run. The segmented
solutions are of lower quality in terms of the individual’s fitness, but when
audited by human planners they are much more viable as they exploit short
term opportunities while ignoring higher, yet more unlikely, long-term gains.
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Fig. 10. Decline of total yield when optimising periods in isolation

5 Related Work

The optimisation of supply chain networks has been an ongoing research topic
for many years. The research work can be categorised into two major streams.
Either a supply chain has to be built from scratch with optimal location of
production facilities, storage and distribution centres, or an existing supply
chain has to be managed in order to make decisions that pertain sourcing
of raw materials, amount of production, etc. A combination of both is also
possible in which case an existing supply chain is supposed to be structurally
altered (e.g., by adding new sites or negotiating new supply contracts). Struc-
tural or management decisions can also be considered with regards to their
planning horizon. The former decisions are of strategic and the latter ones
of tactical and operational nature. This section identifies and discusses a col-
lection of related work undertaken in the area of optimising supply chains
focussing on both streams: Operational/tactical as well as tactical planning.
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An approach that addresses long and short term planning questions is pre-
sented in [8]. In this paper, the authors describe a system that uses a hybrid
technique of mixed integer programming, a genetic algorithm, and discrete
event simulation to make optimal decisions of where to produce (internally
or externally), production planning, transportation as well as strategic deci-
sions on location and capacity of facilities. While the genetic algorithm is em-
ployed to optimise sourcing policies and qualitative variables, mixed integer
programming reduces computational costs by solving quantitative variables.
The effectiveness of the obtained supply chain configuration is evaluated by
a simulation.

In [9], an discrete-event simulation facilitates the evaluation of supply chain
scenarios of a food supplier. The results obtained from the simulations suggest
ways to improve the supply chain by changing inventory strategies. As a
result, the stock level could be reduced which was beneficial to the freshness
of the products, and additional products could be introduced as shelf space
was freed.

Other researchers concentrate only on isolated parts of the supply chain.
[10] describes a hybrid simulation-optimisation approach with the objective
to select the best supplier of a supplier portfolio (in a strategic way rather
than for daily sourcing: the supplier found is used throughout the planning
horizon). A genetic algorithm is employed to search for possible configura-
tions of suppliers. As with the previous approach, a discrete-event simulation
determines the key performance indicators (KPIs) that form the input for
the evaluation function.

Another approach concentrating on parts of the supply chain in isolation is
discussed by Xie and Petrovic in [11]. Their approach defines a new decision-
making system for stock allocation that is based on fuzzy IF-THEN rules.
Initially, the rule base is generated by domain experts, but they allow for
alteration by changing the rule’s weights. A simulation on a 2-echelon sup-
ply chain (1 warehouse, and multiple retailers) is run to demonstrate the
effectiveness of this approach.

Fuzzy set theory is also applied in [12]. Unlike [11], Wang and Shu use fuzzy
logic to model uncertainty such as demand, processing time and delivery of
supplies. The objective of their work is to develop a supply chain model that
minimises the inventory costs by meeting the demands. A genetic algorithm
tries to find the optimal order-up-to levels for all stock-keeping units. Again,
this approach only looks at one objective (minimisation of inventory costs)
and one method to achieve this objective (reduction of inventory).

The common denominator of the above papers is the application of a
simulation (mostly DES) in order to obtain properties of the supply chain
and evaluate the performance of the optimisation method. This observation
is also backed by several surveys such as [13, 14, 15]. Methods used to obtain
inputs for the simulation are mainly genetic algorithms (GA). However, even
though GAs seem to dominate, recent publications indicate an advent of
fuzzy logic systems as drivers for the simulation process.
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Another aspect worth considering when building a solution that is meant
to be reusable is the structure of the building blocks of the supply chain, that
is, the model. Many attempts have been made to develop a unified supply
chain model and terminology. Some of them like [16] represent common termi-
nology or [17], which emphasises configurability and proposes event-discrete
simulation as means to analyse supply chains, but this work has its empha-
sis on business processes rather than the definition of reusable component as
they are desirable to create a programming model. Others like [18, 19, 20] use
special modelling languages to express the complexity of business processes
and automatically generate simulation models. Although all of them suggest
employing simulations to analyse supply chain networks, they require expert
knowledge of modelling languages like Rockwell Software’s ARENA, one of
the prevalent languages for modelling supply chain networks. The resulting
models may be generated in a programming language that is incompatible
to the rest of the system. We believe that a generic supply chain model can
be developed that supports both, flexibility and ease of use when creating
the model without the necessity to acquire expert knowledge on simulation
languages. The ideas presented in this chapter are implemented in a frame-
work which is employed to model the supply chain operations of a real-world
business.

6 Conclusion and Future Work

In this chapter, we looked at the application of an EA to the problem of
optimising the key decision points in the supply chain network of a major
agricultural chemicals company. Modelling the highly complex nature of that
company’s operations was the first part of the challenge of successfully ac-
complishing this endeavour. A balanced mix of discrete and continuous event
simulation had to be used. Furthermore, the model was designed in such a
way as to be amenable to use within the framework of an EA.

Of key importance was developing the ability to represent the decision
points in the supply chain network simulation as entities that could be ma-
nipulated by evolutionary operators. This was achieved in different ways. For
the event-based approach, firstly by allowing the timing of decision events
to be determined by values within the candidate individual representation,
and also the types of those decision events. Thus, for example, a candidate
individual could specify that the operation of “change from product A to
product B” could be scheduled to happen in a particular part of the network
on a given date and time. Secondly, the processing logic of “switching” nodes
of the network could be manipulated by evolutionary operators. For example,
the production of a particular chemical could involve a number of ingredients
which have to be drawn from a variety of sources. In some cases, it might be
easy to determine a set of rules to express the correct routing logic to use. In
other situation, it may not be obvious and thus it would be preferable to let
the individual represent decision making logic, as part of the encoding, and
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then evaluate the performance of evolved logic as a component of the overall
fitness evaluation process.

The rule-based approach abandons the idea of having isolated nodes that
handle the sourcing. In contrast to the event-based system, a decision is made
at each sample point based on the current state of the system. The resulting
plan produces consistent and traceable decisions. Despite the fact that this
approach adds the process of balancing supply and storage capacities to the
search space (as opposed to running a deterministic repair function), it is able
to find a solution much faster while generating even better solutions. Reasons
for this observation may be that the search space of the event-based approach,
that is all combinations of type and date of events, seems to be larger than
the permutation of rules used in the rule-based approach. In addition, many
infeasible solutions seem to be generated which demand for repair by running
a costly re-evaluation.

Using rules to make decisions constricts the search space. However, only
those potential solutions seem to be neglected that are less viable, as indicated
by the better solutions obtained. The reason is less surprising when consid-
ering the nature of the problem. Changeovers, reduced plant production and
sourcing of material are based on rules. A changeover occurs once a tank is
reaching its maximum capacity, the production is reduced upon downstream
bottlenecks and a sourcing decision depends on minimal procurement costs.
Trying to find these decisions without understanding their natural cause is
more expensive and bears many lost opportunities compared to a supply
chain that is driven by a condition-decision scheme as we presented it.

The results presented in this chapter also illustrate the trade-off that is
frequently accepted by business managers in practice. By running the soft-
ware in a global mode over a large time-frame, an excellent result could
be achieved, but the validity of such a result could be doubted by human
managers who would rightly point out that the further out into the future
that assumptions are made about supply chain conditions, the less reliable
those assumptions would be. Hence we chose to apply the simulation/evo-
lution algorithm over the whole time-frame in phases, starting with a short
term phase of a few months, and then looking further into the future. This
gave our approach the benefit of seeking higher levels of optimisation in the
short term, wherein knowledge of conditions is quite firm, and then freezing
those results and progressively expanding the scope of inclusion to seek out
optimisation further into the future.

As constructed, the software application arising from the rule-driven sim-
ulation model and the EA presented in this chapter was able to provide
invaluable insight and speculative modelling (“what-if”) capabilities to man-
agers of the client company, allowing them to find ways to optimise their
supply chain network, and of course maximise production. This is the litmus
test of the value of this application, and it is a rewarding application of the
power of evolutionary computation to a real-world business.
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In addition to our work presented in this chapter, several promising ideas
may improve the results obtained. As an example, we aim to expand the
linguistic terms that can be taken into account by adding future availabil-
ity of plants as well as past utilisation to smoothen out the plant’s overall
utilisation.

A promising method to improve the evolution of the rule bases is to em-
ploy a co-evolutionary approach in which rule bases would be developed in
isolation. An instance of an EA would only concentrate on its designated rule
base (i.e. one EA instance could be employed per plant to evolve rules for its
utilisation, one EA instance for sourcing, etc.) passing on the best of its rule
bases to form the overall solution rule bases.

This chapter has presented only the current state of our endeavour to
find a common model and methodology for optimising supply chain networks
which caters for many business cases and industries. We expect the current
method to be fine-tuned and extended to allow maximal generalisation and
applicability.
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