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Abstract
We present a description and initial results of a computer code that coevolves Fuzzy

Logic rules to play a two-sided zero-sum competitive game. It is based on the TEMPO
Military Planning Game that has been used to teach resource allocation to over 20,000
students over the past 40 years. No feasible algorithm for optimal play is known. The
coevolved rules, when pitted against human players, usually win the first few competitions.
For reasons not yet understood, the evolved rules (found in a symmetrical competition)
place little value on information concerning the play of the opponent.

1 Introduction

The notion of “big decisions”, those that shape the future evolution of a business or organization,
frequently attach to the word “strategic”. For example, what a company chooses to do or avoid
doing is shaped by its answer to the “strategic” question:Are we a consulting company or a
product company?Or in the case of the US Navy the question has taken the form: Are we an
organization that provides prompt and sustained operations at sea, or are we operators of ocean
going naval combatants?

How is a strategic question like this to be answered? First, any analysis will ask if there are
customers and competitors, and how are they described. Second, can we profitably obtain and
serve the customers in the face of the existing and potential competition? Third, what should
be done and in what order to become “successful”? Easily stated questions — but difficult to
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answer. Even describing what constitutes a “good choice or set of choices” is complicated by
the tens to thousands of different actions that can be taken. In larger organizations that have had
time to evolve in response to competitive and environmental pressures, the allocation of effort
— the decision — is most explicitly presented in the “budget”. But budgets tend to describe
inputs to the organization’s activities and not the outputs. Businesses fall back on measures of
profitability over some time period as the measure of their success. Military organizations look
to wars and conflicts to characterize their success. Thus, analyzing “strategic” questions can
be cast as asking: Will a particular sequence of investments, expressed as budgets, over many
years produce a successful result in the face of competition and a changing environment?

In the early 1960s, the Department of Defense created a management system, the Plan-
ning, Programming, and Budgeting System (PPBS) of considerable complexity to rational-
ize its resource allocation problems. A major training program was instituted to teach the
PPBS and a “game” was created by General Electric’s “TEMPO think tank” to train people
in the use of the new system. The Defense Management Resource Institute (DRMI) (see
www.nps.navy.mil/drmi/ 98org.htm) has used the TEMPO game in its courses for nearly 40
years. Over 20,000 students from 125 countries have benefited from exposure to this game.

We became interested in resource allocation problems while conducting large scale, multi-
nation “futures” studies. Our studies used scenario methods (Schwartz, 1991). An integral
part of the multi-year competitive decision environment was allocation of national resources
to defense. This forced trade-offs between investment in economic growth, foreign assistance,
education, etc. These are a very complex set of decisions and we soon realized that we were
trimming a very complex decision tree and had little hope of understanding what other options
might offer. The work presented here reports one facet of our research program, initiated in
2000, to deal with aspects of resource allocation problems in a world where your competitors
are also able to make choices.

2 Coevolutionary Approaches to Games

Games are characterized by rules that describe the moves each player can make. These moves
constitute the behavior of the players, the manner in which each allocates his resources. When
a player makes a move, he receives a payoff; usually he tries to maximize the cumulative payoff
over a period of time. In some games, such as chess, the payoff comes at the end of the game,
but we can imagine a surrogate payoff, or evaluation function, that correlates with a player’s
chances of winning at each point in the course of the game.

The evaluation function is a key ingredient in a game-playing system. Sometimes, however,
we have no idea of how to create a good evaluation function; there may be no clear measure of
performance beyond simply whether you win, lose, or draw.

The situation is similar to that of living creatures in nature, who are consummate problem
solvers, constantly facing the most critical problem of avoiding being someone else’s lunch.
Many of their defensive and offensive survival strategies are genetically hard-wired. But how
did these strategies begin? We can trace similarities across many species. For example, many
animals use cryptic coloration to blend into their background. They may be only distantly
related, such as the leafy sea dragon and the chameleon, and yet their strategy is the same: don’t
be noticed. Other animals have learned that there is “safety in numbers,” including schooling
fish and herd animals such as antelope. These complex behaviors were learned over many
generations of trial and error, and a great deal of life and death.

This is a process of coevolution. It is not simply one individual or species against its en-
vironment, but rather individuals against other individuals, each competing for resources in an
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environment that itself poses its own threats. Competing individuals use random variation and
selection to seek out survival strategies that will give them an edge over their opposition. Each
innovation from one side may lead to an innovation from another, an “arms race” wherein in-
dividuals evolve to overcome challenges posed by other individuals, which are in turn evolving
to overcome new challenges, and so forth.

It is not surprising that coevolutionary processes have been used by many researchers,
whether in optimization or in game playing.

Sebald and Schlenzig have studied the design of drug controllers for surgical patients by
coevolving a population of so-called “CMAC” controllers, chosen for effectiveness, against
a population of (simulated) patients, chosen for presenting difficulties (Sebald and Schlenzig,
1994). Many researchers have studied pursuit-evasion games, for example (Reynolds, 1994;
Cliff and Miller, 1996; Floreano and Nolfi, 1997). Various interesting approaches to constraint-
satisfaction problems are reported in (Paredis, 1994; Paredis, 1995; Michalewicz and Nazhiy-
ath, 1995; Le Riche et al., 1995). With a bit of thought, what would appear to be a straightfor-
ward optimization problem can often be recast with advantage as a problem of coevolution.

In the remainder of this section we mention some developments in game playing.
In 1987 Axelrod studied the Iterated Prisoner’s Dilemma (IPD) by an evolutionary simu-

lation (Axelrod, 1987). Strategies were represented as look-up tables giving a player’s move
— cooperate or defect — as a function of the past 3 moves (at most) on each side. Strategies
competed in a round-robin format (everyone plays against every possible opponent) for 151
moves in each encounter. The higher-scoring strategies were then favored for survival using
proportional selection, and new strategies were created by mutation and by one-point crossover.
Axelrod made two observations. First, the mean score of the survivors decreased in the early
generations, indicating defection, but then rose to a level indicating that the population had
learned to cooperate. Second, many of the strategies that eventually evolved resembled the
simple but effective strategy of “tit-for-tat” — cooperate on the first move, and then mirror the
opponent’s last move.

These observations are very interesting, yet they perhaps do not fully explain the degradation
in payoff that is seen when a continuous range of options is employed. Hundreds of papers about
the prisoner’s dilemma are written each year, and very many of the contributions to this literature
have involved evolutionary algorithms in different forms. These and many other studies indicate
the potential for using coevolutionary simulation to study the emergence of strategies in simple
and complex games.

In the late 1990s and into 2000, Chellapilla and Fogel implemented a coevolutionary system
that taught itself to play checkers at a level on par with human experts. The system worked
like this. Each position was represented as a vector of 32 components, corresponding to the
available positions on the board. Components could take on values from -K, -1, 0, +1, K, where
K was an evolvable real value assigned to a king, and 1 was the value for a regular checker.
A 0 represented an empty square, positive values indicated pieces belonging to the player, and
negative values were for the opponent’s pieces. The vector components served as inputs to a
neural network with an input layer, multiple hidden layers, and an output node. The output
value served as a static evaluation function for positions — the more positive the value, the
more the neural network “liked” the position, and the more negative, the more it “disliked” the
position. Minimax was used to select the best move at each play based on the evaluations from
the neural network.

The coevolutionary system started with a population of 15 neural networks, each having
its weighted connections and K value set at random. Each of the 15 parent networks created
an offspring through mutation of the weights and K value, and then the 30 neural networks
competed in games of checkers Points were awarded for winning (+1), losing (−2), or drawing
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(0). The 15 highest-scoring networks were selected as parents for the next generation, with this
process of coevolutionary self-play iterating for hundreds of generations. The networks did not
receive feedback about specific games or external judgments on the quality of moves. The only
feedback was an aggregate score for a series of games.

The best evolved neural network (at generation 840) was tested by hand, using the screen
name “Blondie24”, against real people playing over the Internet in a free checkers website.
After 165 games, Blondie24 was rated in the top 500 of 120,000 registered players on the site.
The details of this research are in (Chellapilla and Fogel, 1999a; Chellapilla and Fogel, 1999b;
Chellapilla and Fogel, 2001; Fogel, 2002).

Coevolution can be a versatile method for optimizing solutions to complex games, and a
reasonable choice for exploring for useful strategies when there’s little available information
about the domain.

3 The TEMPO game

The TEMPO Military Planning Game is a two-sided zero-sum competitive game. Teams of
players compete in building force structures by dividing limited budgets, over a succession
of budgeting periods (“years”) between categories such as “acquisition” and “operation” of
“offensive units” and “defensive units”. The rules are no more complex than the rules of, say,
Monopoly. However, players learn that the rules’ apparent simplicity is deceptive: they pose
challenging and difficult decision problems. No feasible algorithm for optimal play is known.

The full set of investment categories for the TEMPO game comprises: (1) operation of
existing forces, (2) acquisition of additional or modified forces, (3) research and development
(“R&D”), (4) intelligence, (5) counter-intelligence.

There are four types of forces: two offensive (“Offensive A and B”) and two defensive
(“Defensive A and B”). Each type comprises several weapon systems with varying acquisition
and operation costs (measured in “dollars”), measures of effectiveness (in “utils”), and dates
of availability (in “years”). A team’s objective is to maximize its total “net offensive utils”. A
team’s net offensive utils of type A are the total utils for its operating Offensive A units, minus
the opposing team’s Defensive A, but not less than zero. Likewise for type B. Thus there is no
advantage in investing more in a defensive system than is necessary to counter the opponent’s
offensive systems of the same type.

R&D is current investment that buys the possibility in a future year of acquiring new weapon
systems, possibly with better price/performance ratios than those now available. Investment in
intelligence buys information about the opponent’s operating forces and investment activities.
Investment in counter-intelligence degrades the information the opponent obtains through intel-
ligence.

Every year the probability of war (PWar) is announced. When this is low, players may well
decide to invest heavily in R&D and acquisition of new units; when it is high, they may prefer
to concentrate on operating existing units.

4 Initial experiments

In 2000 we did some experiments applying EC to a very rudimentary version of the TEMPO
game. There were only one offensive and one defensive weapon system (“OA1” and “DA1”).
R&D was eliminated; however the operating and acquisition costs of the systems could vary
from year to year. Intelligence and counter-intelligence were also eliminated, but each player
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was given the opponent’s current inventory of the two weapon systems. A game ended with the
outbreak of war, or after a specified number of years (around 10). Finally, utils were equated
with units, i.e., the util values were set at 1 per unit. This meant that operating an acquisition
costs were effectively given in dollars per util, and operating and acquisition decisions could be
made with a granularity of 1 util.

The experiments were done with the help of John Koza’s Simple Lisp Code for Genetic Pro-
gramming (Koza, 1992). This is a generational, tree-based Genetic-Programming kernel written
in Common Lisp. Individuals (candidate algorithms) are represented as computer programs in a
simple Lisp-like language, written in terms of user-specified terminals (constants and variables)
and functions. In addition to (1) the set of terminals and (2) the set of functions, the user must
specify (3) the fitness measure, (4) a set of fitness cases, (5) a termination condition, and (6) a
set of GP parameters such as population size and probability of mutation.

For the rudimentary TEMPO game, the terminals were random floating-point constants and
variables describing the current state of the game. State variables included the current total
available budget, PWar, current acquisition limits, prices, and operating costs for the offensive
and defensive units, and both the player’s and the opponent’s current inventories of these units.

The function set included operations that attempt to allocate funds for the coming budgeting
period to acquisition and operation of the offensive and defensive units. For example (AcOA1
u) allocates funds to acquiring at mostu units of “Offensive A1” subject to constraints: the
number of units is a nonnegative integer, total expenditures do not exceed the available budget,
and total units acquired do not exceed the acquisition limit for OA1. Argumentsu that attempt
to violate these constraints incur a penalty; for example, if the requested number of units would
exceed the acquisition limit, the player receives only the allowed number of units, but the budget
is still decremented by the total cost of the number requested. Besides these TEMPO-specific
operations, the function set included the elementary arithmetic operations(+,−,×,÷) and two
general programming constructs: (if3n x y z) evaluatesn and then, depending on whether the
result is negative, zero, or positive, evaluates and returns the value ofx, y, or z; and (progn3x
y z) evaluates its three arguments in order and returns the value of the last.

Investment algorithms were evaluated for fitness by pitting each in games against a selection
of others from the same population and adding up penalties according to the result: 0 for a win,
1/2 for a draw, and 1 for a loss. The fitness was1/(1 + P ), whereP is the sum of the penalties.

A fitness case consisted of initial inventories of the two weapon systems, the maximum
number of game years, and initial values, rates of increase or decrease, and volatilities for the
budget, PWar (actually the corresponding odds) and the acquisition costs, acquisition limits,
and operating costs of the weapon systems. (These latter parameters were updated from year
to year within each game by random factors drawn from log-normal distributions determined
by the corresponding rates of change and volatilities.) Six fitness cases were defined, and each
player was evaluated by one game (each with a different opponent) for each fitness case.

The termination criterion for evolution was simply reaching the specified number of gener-
ations.

The main GP parameters for the run reported here were: population 12,000, number of gen-
erations 100, and the following proportions for reproduction methods: crossover 89%, copying
10%, and mutation 1%. Other parameters included method of selection (fitness-proportionate)
and method of generation (ramped half-and-half, see Koza (Koza, 1992) for the definition).

The question was whether anything reasonable would emerge in such a simple framework.
And indeed, starting from an initial generation of completely random programs, an algorithm
was evolved that allocated funds according to rudimentary sensible rules, which can be charac-
terized as “dumb, but not crazy”. If the budget is adequate, it is equivalent to:
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(OPOA1 OA1INV)

(ACDA1 DA1ACLIM)

(OPDA1 DA1INV)

(ACOA1 OA1ACLIM)

Here OP means “operate”, AC means “acquire”, INV is “inventory,” and ACLIM is “acquisition
limit”. Thus the algorithm would not attempt to acquire units beyond the appropriate acquisition
limits or to operate units beyond the number in inventory. The actual code was nearly 100 lines
of Lisp, mostly introns, which some hand editing reduced to:

(OPOA1 OA1INV)

(IF3 (+ PWAR BUDGET) 0 0

(PROGN

(ACDA1 DA1ACLIM)

(IF3

(OPDA1

(IF3 DA1INV

DA1ACCOST

(OPDA1 DA1ACLIM)

DA1INV))

0

(OPOA1 OA1OPCOST)

(ACOA1 OA1ACLIM))))

This incorporates a check to assure that an initial allocation to operation of offensive units
has not exhausted available funds (by more than a fractional dollar) before further allocations
are attempted.

5 Design of a New System

In an attempt to improve the evolution of human readable rules we designed a coevolutionary
system that evolves Fuzzy Logic rule-bases to play the TEMPO game. The new system has the
following features:

• Each individual can encode a maximum ofw = 30 rules for acquiring and operating
weapons (“weapon rules”) andi = 30 rules for buying intelligence or counter-intelligence
(“intel rules”).

The chromosome is based on the structure given in Figure 1.

There arem rules altogether; each Rulei is built from several fields (Figure 1 expands
Rule3):

– U3 is a boolean defining whether the rule Rule3 is used,

– Bi3 are booleans defining whether inputi is used,

– Ci3 are centers of the Gaussian in range[0, 1] for input i,
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Rule Rule RuleRule
1 2 3 m

. . .

. . .B   C   SU B   C   S B   C   S Y
3 313 13 13 23 23 23 n3 n3 n3

Figure 1.A structure of a chromosome

– Si3 are sigmas of the Gaussian in range[0, inf) for input i, and

– Y3 is the output in range[0, 1] of rule Rule3.

There is one rule set for weapon allocations and a second alike rule set for buying intel-
ligence. Each rule set has a total number of floating point genes equal tom(1 + 3n + 1)
(see Figure 1). The parameters of the weapon rule set used in experiments reported fur-
ther in the paper werem = 30 andnw = 15.1 The intelligence rule set usedm = 30 and
ni = 7.2 The complete chromosome was encoded as one string of floating point numbers
and booleans.

• We use the Mamdani Fuzzy Logic System with Gaussian membership functions,3 Single-
ton Fuzzyfier, product operation rule for fuzzy AND, and Centre of Average Defuzzyfi-
cation.

• The weapon rules assign a value (a “desirability”) to each weapon system; the intel rules
assign a value to each intelligence/counter-intelligence category. The budget is allocated
by linear scaling of these values, followed by normalization in order not to exceed the
available budget.

• We use two populations A and B, each consisting ofpop size = 200 individuals with a
fixed genotype lengthl = 30(1 + 3 · 15 + 1) + 30(1 + 3 · 7 + 1) = 2, 100. The decoded
phenotype has a varying number of rules and membership functions4 with a maximum
number (given by the maximum lengthl of the chromosome).

• Each individual from population A (B) is evaluated by letting it compete againsto = 40
randomly chosen opponents from the population B (A). The fitness of each individual
is its average “net offensive utils” minus a penalty term that is linear in the number of
parameters used by the Fuzzy Logic System (for “pruning”). More precisely, the fitness
f of an individual is calculated as follows:

1Note again, that each rule can use one or more of the available environmental parameters for weapon allocation
and intelligence gathering. The environmental weapon related parameters are: probability of war, budget, weapon
category (offensive or defensive), weapon type (A or B), weapon subtype (0, 1, 2, etc), initial units available,
maximum number of units available for acquisition, acquisition cost per unit, operations cost per unit, utils (i.e.,
effectiveness of weapon), utils per operation cost, utils per acquisition cost, year available, enemy offensive force
change, and enemy defensive force change.

2The environmental intelligence related parameters are: probability of war, budget, intelligence category, of-
fensive and defensive force change for weapon types A and B.

3We use one Gaussian spreading parameter for each input.
4Rules and inputs can be “pruned”, i.e., be “NULL” and hence not used. Pruning reduced the effect of over-

learning. The fitness reflects that a smaller rule-base is preferable using a static penalty approach.
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f = k · u− p · (w + wi/nw)− p · (g + gi/ni),

u is “the average net offensive utils”,w is “the total number of weapon rules used”,
wi is “the total number of weapon inputs used”,g is “the total number of intelligence
rules used”,gi is “the total number of intelligence inputs used”,nw = 15 is the maximum
number of weapon inputs,ni = 7 is the maximum number of intelligence inputs,k = 108,
andp = 104. Hence, more compact well-performing rule-bases are preferred during the
evolution.

• The mutation operator could perform either small or large mutations of each parameter
with a probabilitypmut = 0.7. If mutation is selected then each gene has a probably of
0.5 to be mutated. If a gene is selected for mutation then there is a fixed probability of
0.1 for a “big mutation” and 0.9 for a “small mutation”. A “big mutation” adds a random
number in range[−d, +d] to the gene, while the “small mutation” adds a random number
in range[−d/10, +d/10] (d = 0.1 is used). Notice that it might seem like overly strong
mutation, but due to unexpressed parts of the chromosome which are not translated to the
phenotype there are many unused intron-like segments in the chromosome.

• The crossover operator is a standard two-point crossover withpcross = 0.3.

• For each population the environment changes from game to game, i.e., available weapons
and effectiveness and prices change. This results in a dynamically changing environment
in which the rule-bases have to make budget allocations.

Starting from random populations the coevolutionary system develops powerful Fuzzy Logic
rule-bases. In order to get an understanding of some kind-of “absolute” performance the best
performing individual we let it play against a static “expert” based on simple heuristics (ex-
pressed as Fuzzy Logic rules). The “expert” uses the following rules:

if [UtilsPerOperationCost IS Very Low – Low]then [Evaluation IS Very Low]

if [UtilsPerOperationCost IS Low – High]then [Evaluation IS Medium]

if [UtilsPerOperationCost IS High – Very High]then [Evaluation IS Very High]

In other words, the “expert” looks at the effectiveness of each weapon only and disregards any
other available information. The performance against the “expert” is not included in any fitness
calculations but is used to understand the quality of the evolved rule-bases during the evolution.

The rules can be presented in a form that can be understood easily by humans; one reason
for choosing Fuzzy Logic. Here is an example:

RULE 1:
if [PWar IS Very Low – Low]

[CATEGORY IS DEFENSIVE]
[SUBTYPE IS 1 OR 2]
[Inventory IS Low]
[MaxAcquisitonUnits IS Low – Medium]
[AcquisitionCost IS Very Low]
[UtilsPerAcquisitionCost IS Very Low – Low]

then [Evaluation IS Low]
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The terms of the “if” part refer to seven of the environment variables that are available for
constructing a weapon rule. A term like “AcquisitionCost IS Very Low” refers to the degree
of membership of the acquisition cost in a certain fuzzy set represented internally by a Gaus-
sian membership function with a given centerc and standard deviationσ. The program uses
the actual numeric values ofc andσ internally, and these are the quantities that mutation and
crossover operate on. But for the human reader, expressions like “Very Low” are presented, as
presumably more palatable than a pair of floating point numbers.

The ranges of meaningful acquisition costs are divided into five subranges running from
“Very Low” to “Very High.” These ranges depend on the centerc of the Gaussian in the fol-
lowing way: “Very Low” if c is in range[0, 1/8], “Low” if c is in range(1/8, 3/8], “Medium”
if c is in range(3/8, 5/8], “High” if c is in range(5/8, 7/8] and “Very High” if c is in range
(7/8, 1]. The reason for this split-up is that the “imaginary center” for each category is placed as
follows: “Very Low” is at 0, “Low” is at 1/4, “Medium” is at1/2, “High” is at 3/4, and “Very
High” is at 1. Hence, the imaginary category centers have maximal distance to each other. The
human-readable output is generated using the category with the minimal distance to the center
c.

The “Evaluation IS Low” in the “then” part of the rule refers to a “desirability” value.
Again the program uses a specific number. The human reader is told that the number is in the
low subrange of possible desirability values (the same category limits are used as for the “if”
part).

6 New Experiments

Initial experience with the coevolution code immediately demonstrated the power of the ap-
proach — it proceeded to win first games with most of those who played against the derived
rules. It was also clear early on, Winter 2001, that the coevolved rules didn’t value information
about the opponent’s choices. That is, no rules for buying intelligence or counter-intelligence
were of sufficient value to be included in the evolved set. Similar behavior had been seen in play
of the TEMPO paper game when we were using it to teach our students. We attributed this ei-
ther to avoidance of excessive inputs — a common human strategy for coping with information
overload — or to the “gaming of the game” that occurs when you know approximately when
the game will be over. Another possibility was that since the initial version of the TEMPO code
provided information that was not quantitative on what the opponent was getting with invest-
ments made, there was truly little value. We did some preliminary investigations to determine
if we could configure the game so that there might be value to buying intelligence. We gave
player X a larger budget and immediate access to all weapons as they became available, while
player Y had a smaller budget and was delayed one year in having investment opportunity on
the various weapons. This coupled with a reduction in the prolixity penalty did produce a few
“weak” rules for the purchase of intelligence by the disadvantaged player.

These efforts immediately highlighted another problem. It had taken approximately 2 weeks
of computation on a single 3 GHz processor to coevolve the initial rules. To properly investigate
issues of the sort just described would require faster computational turnaround. We embarked
on porting of the coevolutionary code to the Processing Graph Method Tool (PGMT), a parallel
computing program support system developed at the Naval Research Laboratory (see (Kaplan,
1997; Anderson, 2002)). An application under PGMT is represented as a data-flow graph (sim-
ilar to a Petri net) whose processing nodes can run in parallel on separate processors. The
mapping of nodes to physical processors takes place at runtime. This flexibility facilitates mov-
ing an application, without rewriting, from one parallel-processing system to a very different
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one — from a small, heterogeneous network of workstations, say, to a large, homogeneous,
high-performance shared-memory multi-processor system (TEMPO examples were run on two
machines of the latter type at NRL’s Distributed Center for High Performance Computing: Sil-
icon Graphics Origin 3800 and Altix systems).

We also modified the information provided to be more useful. A rule input was provided
indicating whether the opponent had bought counter-intelligence. An input giving the initially
available number of units of a weapon system was replaced with one giving the player’s current
inventory. The opponent’s operating forces were given in total utils rather than number of
weapon units and these values were given as absolute current values, rather than as changes
relative to the previous year. This last change was motivated by the fact that the rules incorporate
no “memory” of previous years’ decisions.

The result of a coevolution using these modifications has been used in an economics course
at NPS. In addition to the coevolutionary system, there is a game system that lets a human player
play against a saved individual. The computer distributes its budget according to its rule base,
while the human player interacts with the game system through a spreadsheet interface. Many
of the students needed three or four tries before achieving an outcome that they were willing
to submit for grading. Thus we continue to see human-competitive play in the coevolved rules.
One of our colleagues, an economist with previous experience with the DRMI paper form of the
game, was able through prolonged and concerted effort to beat the machine by a small margin
on a first try. During play, he was ascribing all manner of sophisticated motivations to the
machine for its moves. He was dismayed to learn afterward that he had been competing against
a set of precisely three rules: the one shown above in section V and the following two others.

RULE 2:
if [Budget IS Low – Medium]

[EnemyCounterintel IS NOT BOUGHT]
[SUBTYPE IS 1]
[Utils IS Low]
[UtilsPerAcquisitionCost IS Very High]
[YearAvailable IS Medium]

then [Evaluation IS Low]

RULE 3:
if [Budget IS Low]

[CATEGORY IS OFFENSIVE]
[TYPE IS B]
[Utils IS Very High]
[YearAvailable IS Medium - High]
[EnemyOffensiveUtils IS Unkn. OR Very Low]
[EnemyDefensiveUtils IS Unkn. OR Very Low]

then [Evaluation IS Very High]

Such a low number of rules is not atypical. The above three rules RULE1, RULE2, and
RULE3 constitute a complete rule-base after a completed coevolutionary run. Some analysis
revealed that RULE1 acts as a baseline rule stating that unless a weapon has special characteris-
tics it is not worth investing in. RULE2 states that certain defense weapons are worth investing
in. It might seem counter-intuitive that this is the case since both RULE1 and RULE2 state
“Evaluation IS Low”, but analysis revealed that the Evaluation from RULE1 is significantly
lower than from RULE2. Both have the same human-readable output “Evaluation IS Low” but
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the actual value in the phenotype is very different. Hence, this is an example where the human-
readable output actually can be misleading the interpretation of the rule-base. RULE3 on the
other hand declares that certain offensive weapons are desirable.

Figure 2 shows how the number of rules used by the best player during the coevolution
varied over the first 600 generation. The actual run went to generation 1927, but instances of
3-rule best players were already appearing before generation 500.

Figure 2.Number of rules used by best player as a function of generation number

With the availability of the PGM2 port, we are beginning to be able to use larger populations
experiment with somewhat larger problems than previously, in particular to increase the number
of weapon systems from 2 to a dozen or so. Doing so, with further relaxation of parsimony
pressure, seems to encourage appearance of rule sets (now larger than 3 rules) containing intel
rules with High or Very High in their “then” parts.

Figure 3 shows the average number of used rules over all generations versus the prolixity
settingp. The figure reports on results for three proxility settings:p = 1, 000, p = 10, 000, and
p = 100, 000. The experiment confirmed the intuition that the average number of used rules
tends to be higher when the prolixity setting is lower.
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Figure 3.Average number of rules used by best player as a function of prolixity setting

Figures 4 and 5 display the diversity of two competing populations, respectively, versus the
generation number. Each figure contains 3 plots, one of each setting of the prolixity penaltyp.

As shown in these figures, the population diversity decreases with the number of generations
till some equilibrium point is reached. Furthermore, after the diversity stabilizes, the general
tendency is that increases in population A’s diversity correspond with decreases in population
B’s diversity and vice versa. This can be seen by comparing matching plots from the two figures
(i.e., comparing the solid line plot from figure 4 with the solid line plot from figure 5, and so on).
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Figure 4.Diversity of the first population as a function of generation number
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Figure 5.Diversity of the second population as a function of generation number

Further experiments may give us some hints on convergence properties of our coevolutionary
system.

7 Conclusions and Future Work

Four years ago when we started this work we didn’t know if resource allocation problems of
the type described in the TEMPO-paper game would be approachable using coevolutionary
computation methods. And, even though the initial LISP experimental system suggested an
affirmative answer, the nature of what we could learn from a coevolutionary system was not
obvious to us. We have learned a number of surprising things:

1. The environment, e.g., PWar, budget size, sequence of available weapon types, cost per
utile, etc, is important but knowing what your opponent is doing — intelligence informa-
tion — is a far slippier component in a sequential game of non-abelian decisions.

2. Though the derived rules can beat most human players immediately, the human players
are able to learn the “manner of play” of the machine codes. This suggests that “intel”
may after all be important for the machine players to consistently win.
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3. Exploring questions that arise, as in 1. and 2., will require a large and growing computa-
tional environment. Fortunately, the choice of PGMT has facilitated our ability to move
between different multi-processor environments with a minimal amount of recoding.

4. The prolixity penalty appears likely to be useful as a proxy for the information handling
capacity of the “decision maker”. The more rules an organization uses to make decisions
the greater the demand for information processing capability. Since most large organi-
zation use fairly simple metaphors for making decisions, and these metaphors can be
captured as “if-then” rules, it is possible to imagine exploring alternative rules using dif-
ferent fitness functions to determine why organizations have come to the rules they use.
This is very much like the “inverse problem” where given a result we have to find out
what was a potential cause of that result. This is why “1R” and “Naive Bayes” work so
well so often.

5. Non-transitive (paper, rock, scissors) ordering of strategies seems to be possible.

We are just at the beginning of this research and its application. We need to understand
why the code produces rules that favor allocation of most effort to evaluating the cost per utiles
of weapon capability and pay little attention to the value of the opponent’s behavior. We also
need to include investment opportunities in R&D, including both modernization and totally new
systems. The current system has PWar and budgets as externally supplied values. A hierarchi-
cal competition where the higher-level system that determines these values interacts with the
current game is of considerable interest.

Our research has now moved from our preliminary trials on desktop computing machines to
networks of processors. We thus far have done our computation in 2-3 Ghz desktop computers,
on a loosely coupled cluster of 2 Sun and 3 Silicon Graphics workstations, on 28 processors in
a tightly coupled network of 128 processor in the SGI 3800, and are prepared to do experiments
in other networked environments. The use of PGMT has permitted us to move efficiently from
one computing environment to another. Our expectation is that this combination of a very
flexible representation of the resource allocation problem and the computational environment
that PGMT provides will permit research on a growing family of poorly understood problems
encountered in large living systems.
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