
Parameter Adaptation for GP Forecasting

Applications

Neal Wagner1 and Zbigniew Michalewicz2

1 Department of Mathematics and Computer Science, Augusta State University,
Augusta, GA 30904, USA nwagner@aug.edu

2 School of Computer Science, University of Adelaide, Adelaide, SA 5005,
Australia, Institute of Computer Science, Polish Academy of Sciences, ul.
Ordona 21, 01-237 Warsaw, Poland, and Polish-Japanese Institute of
Information Technology, ul. Koszykowa 86, 02-008 Warsaw, Poland
zbyszek@cs.adelaide.edu.au

Summary. Genetic Programming (GP) has been applied to time series forecast-
ing often with favorable results. However, for forecasting tasks several open issues
concerning parameter settings exist. Many real-world forecasting tasks are dynamic
in nature and, thus, static parameter settings may lead to inferior performance.
This paper presents the results of recent studies investigating non-static parameter
settings that are controlled by feedback from the GP search process. Specifically,
non-static settings for population size and training data size are explored.

Applications based on Evolutionary Algorithms (EA) rely on numerous
parameters (e.g., population size, mutation and recombination rates, etc.) to
guide and control algorithm execution. The values of these parameters have a
significant effect on the performance of an EA. A common practice is to tune
the parameters, that is to make several pre-experiment runs with various
parameter settings in order to find good values. These values are then used
for the actual experiment and typically remain fixed for the duration of the
experiment. Manually tuning parameters is problematic because parameters
are not necessarily independent of each other and, thus, trying all possible
combinations requires an enormous amount of experiments.

For many applications, especially those used in dynamic environments,
optimal parameter settings may vary over the course of a run. For such appli-
cations the use of static parameters can lead to inferior performance. Adaptive

parameter control refers to the use of feedback from the evolutionary search
process to adjust (adapt) parameter values during a run [34].

EA and other biologically inspired methods (e.g., Neural Networks) have
often been applied to forecasting tasks [4, 7, 8, 11, 13, 17, 20, 27, 37, 38, 40].
Genetic Programming (GP) is a sub-category of EA that is also commonly
used for forecasting [1, 5, 6, 14, 15, 16, 19, 21, 22, 23, 24, 25, 32, 35, 36, 41].



2 Neal Wagner and Zbigniew Michalewicz

While GP forecasting applications often yield good results, a number of open
issues concerning parameter settings exist. Kaboudan [26] recognizes some of
these issues including: 1) how to determine the training data size (i.e., the
number of data to be utilized for training) and 2) how to determine the pop-
ulation size. A few GP forecasting studies have examined good (static) values
for training data and population sizes empirically (for example, [10, 12]), but
there is still no agreement in the literature on what may be optimal. This
paper presents the results of two recent studies which investigate adaptive
parameter control for training data size and population size, respectively. Ad-
ditionally, we will discuss the another aspect of the GP search process for
forecasting, that of finding an optimal evaluation (fitness) function.

The rest of this paper is organized as follows: section 1 gives a brief de-
scription of the application of GP to forecasting tasks, sections 2 and 3 detail
algorithms for adaptively controlling the training data and population sizes,
respectively, section 4 discusses the search for an optimal fitness function, and
section 5 concludes.

1 The Use of GP for Forecasting

In order to have a clear picture of how GP is used for forecasting, it is necessary
to understand the different kinds of forecasting problems that exist. In general,
there are three types:

1. classification problems,
2. regression problems, and
3. time series problems.

In classification problems the goal is to predict the class or category of a
newly occurring event by examing old events and their corresponding classes.
For example, credit card companies need to classify newly occurring credit
card transactions into one of two classes, fraudulent or non-fraudulent. For
this type of problem, the issue of time is of secondary importance and either
does not play a part in the classification process or is incorporated as one of
many features of the process.

Regression problems try to learn about the relationship between several
independent (predictor) variables and a dependent (criterion) variable. For
regression, the desired output is a number. For example, business analysts
may wish to predict a manager’s salary given knowledge of his or her position,
number of supervised employees, number of years at the position, education
level, etc. As for classification problems, the issue of time is either non-existant
or is included as a feature of the problem.

For time series problems the dominant feature is time and the data to be
analyzed presents itself in the form of numerous observations/measurements
given in sequential order of time. The goal of this type of problem is to predict
a future (numeric) value of some variable by examing past values of that



Parameter Adaptation for GP Forecasting Applications 3

variable and/or past values of other related variables. For example, investment
firms try to predict the future value of a particular stock based on past values
of that stock and past values of other related variables such as trading volume,
interest rates, etc.

GP has been used for all three of the above-listed forecasting problems,
however we will focus on time series problems as GP applications for this type
of problem are prevalent.

In GP solutions are represented as tree structures. Internal nodes of so-
lution trees represent appropriate operators and leaf nodes represent input
variables or constants. For time series forecasting applications, the operators
are mathematical functions and the inputs are lagged time series values and/or
explanatory variables. Each solution tree represents a candidate forecasting
model. Figure 1 gives an example solution tree for time series forecasting.
Variables xt1 and xt2 represent time series values one and two periods in the
past, respectively. Crossover is performed by exchanging subtrees from two

+

xt1 sin

×

5.31 xt2

Fig. 1. GP representation of forecasting solution xt1 + sin(5.31xt2)

parent solution trees. Mutation is performed by selecting a subtree of a single
solution tree and replacing it with a randomly-constructed subtree.

GP starts by creating an initial population of candidate forecasting mod-
els. A candidate model is produced by (randomly) constructing a tree made
up of operators and inputs. Each model is ranked based on its prediction er-
ror over a set of training data and new populations are generated by selecting
fitter models and applying the crossover and mutation operations. New pop-
ulations are created until the fittest model has a sufficiently small prediction
error, repeated generations produce no reduction of error, or some limit for
maximum generations has been reached. GP was developed by Koza [29] as a
problem-solving tool with applications in many areas. He was the first to use
GP to search for model specifications that can replicate patterns of observed
time series.3

3 In [29] Koza refers to this as “symbolic regression.”



4 Neal Wagner and Zbigniew Michalewicz

2 Adapting the Training Data Size

The primary objective of time series forecasting is to find a model that accu-
rately represents the underlying data generating process and use this model
to forecast the future. In order to accomplish this, GP requires a set of train-
ing data that sufficiently represents the data generating process in question.
If the training data size is too small, forecasting models evolved by GP are
unlikely to accurately represent the data generating process and, thus, will
have poor forecasting performance. If the training data size is too large, GP
models may suffer from “over-fitting” [9]. Over-fitting refers to forecasting
models that fit both the underlying data generating process and extent noise
in the time series. The problem of setting the training data size is compounded
when a time series is produced by a non-constant process (i.e., one that varies
over time). In such a case different segments of a time series may have differ-
ent underlying processes. If data from two different segments is specified for
GP training, forecasting models evolved may be skewed. Consider the subset
of time series data shown in figure 2. Suppose this represents recent histori-

22, 33, 30, 27, 24, 20, 21, 20, 20
| {z }

segment1

, 23, 26, 29, 30, 28, 29, 32, 30, 31
| {z }

segment2

| . . .
|{z}

future

Fig. 2. Time series containing segments with differing underlying processes.

cal data and has been chosen as training data for GP. Suppose further that
the subset consists of two segments each with a different underlying process.
The second segment’s underlying process represents the current process and
is valid for forecasting future data. The first segment’s process represents an
older environment that no longer exists. Because both segments are analyzed,
evolved forecasting models will be distorted.

A recent study by Wagner and Michalewicz [42] investigates a novel al-
gorithm for adapting the training data size by using “windows” of training
data that slide with time and expand or contract based on feedback from the
GP search. In this GP forecasting application (called “Dynamic Forecasting
GP” or “DyFor GP”), training starts at the beginning of the available histor-
ical time series data. Some initial windowsize (training data size) is set and
several generations are run (in the manner described in the previous section)
to evolve a population of solutions. Then the data window slides to include
the next time series observation. Several generations are run with the new
data window and then the window slides again. This process is repeated until
all available data have been analyzed up to and including the most recent
historical data. Figure 3 illustrates this process. In the figure, | marks the
end of available historical data. The set of several generations run on a single
data window is referred to as a “dynamic generation.” Thus, a single run of



Parameter Adaptation for GP Forecasting Applications 5

22, 33, 30, 27, 24, 20, 21, 20, 20
| {z }

window1

, 23, 26, 29, 30, 28, 29, 32, 30, 31| . . .
|{z}

future

22, 33, 30, 27, 24, 20, 21, 20, 20, 23
| {z }

window2

, 26, 29, 30, 28, 29, 32, 30, 31| . . .
|{z}

future

•
•
•

22, 33, 30, 27, 24, 20, 21, 20, 20, 23, 26, 29, 30, 28, 29, 32, 30, 31
| {z }

windowi

| . . .
|{z}

future

Fig. 3. A sliding data window.

DyFor GP includes several dynamic generations (one for each window slide)
on several different consecutive data windows.

DyFor GP adjusts the data windowsize using feedback from the GP search
process. This is accomplished in the following way.

1. Select two initial windowsizes, one of size n and one of size n + i where n

and i are positive integers.
2. Run a dynamic generation at the beginning of the historical data with

windowsize n.
3. At the end of the dynamic generation, use the best evolved solution (fore-

casting model) to predict a number of future data and then measure the
prediction’s accuracy.

4. Run another dynamic generation also at the beginning of the historical
data with windowsize n + i.

5. At the end of the dynamic generation, predict future data and measure
the prediction’s accuracy. Note which windowsize generated the better
prediction.

6. Select another two windowsizes based on which windowsize had better
accuracy. For example if the smaller of the 2 windowsizes (size n) predicted
more accurately, then choose 2 new windowsizes, one of size n and one of
size n − i. If the larger of the 2 windowsizes (size n + i) predicted more
accurately, then choose windowsizes n + i and n + 2i.

7. Slide the data windows to include the next time series observation. Use
the two selected windowsizes to run another two dynamic generations,
predict future data, and measure their prediction accuracy.

8. Repeat the previous two steps until the the data windows reach the end
of historical data.

Thus, predictive accuracy is used to determine the direction in which to ad-
just the windowsize toward the optimal. Successive window slides bring the
windowsize closer and closer to this destination.



6 Neal Wagner and Zbigniew Michalewicz

Consider the following example. Suppose the time series given in figure 2 is
to be analyzed and forecasted. As depicted in the figure, this time series con-
sists of two segments each with a different underlying data generating process.
The second segment’s underlying process represents the current environment
and is valid for forecasting future data. The first segment’s process represents
an older environment that no longer exists. If there is no knowledge available
concerning these segments, automatic techniques are required to discover the
correct windowsize needed to forecast the current setting. DyFor GP starts by
selecting two initial windowsizes, one larger than the other. Then, two sepa-
rate dynamic generations are run at the beginning of the historical data, each
with its own windowsize. After each dynamic generation, the best solution is
used to predict some number of future data and the accuracy of this predic-
tion is measured. Figure 4 illustrates these steps. In the figure win1 and win2

represent data windows of size 3 and 4, respectively, and pred represents the
future data predicted.

win2
z }| {

22,

win1
z }| {

33, 30, 27,

pred
z }| {

24, 20, 21, 20, 20
| {z }

segment1

, 23, 26, 29, 30, 28, 29, 32, 30, 31
| {z }

segment2

| . . .
|{z}

future

Fig. 4. Initial steps of window adaptation.

The data predicted in these initial steps lies inside the first segment’s
process and, because the dynamic generation involving data window win2

makes use of a greater number of appropriate data than that of win1, it
is likely that win2’s prediction accuracy is better. If this is true, two new
windowsizes for win1 and win2 are selected with sizes of 4 and 5, respectively.
The data windows then slide to include the next time series value, two new
dynamic generations are run, and the best solutions for each used to predict
future data. Figure 5 depicts these steps. In the figure data windows win1

and win2 now include the next time series value, 24, and pred has shifted
one value to the right.

win2
z }| {

22,

win1
z }| {

33, 30, 27, 24,

pred
z }| {

20, 21, 20, 20
| {z }

segment1

, 23, 26, 29, 30, 28, 29, 32, 30, 31
| {z }

segment2

| . . .
|{z}

future

Fig. 5. Window adaptation after the first window slide. Note: win1 and win2 have
size 4 and 5, respectively.



Parameter Adaptation for GP Forecasting Applications 7

This process of selecting two new windowsizes, sliding the data windows,
running two new dynamic generations, and predicting future data is repeated
until the data windows reach the end of historical data. It may be noted that
while the prediction data, pred, lies entirely inside the first segment, the data
windows, win1 and win2, expand to encompass a greater number of appro-
priate data. However, after several window slides, when the data windows span
data from both the first and second segments, it is likely that the window ad-
justment reverses direction. Figures 6 and 7 show this phenomenon. In figure

22, 33, 30, 27, 24, 20, 21, 20, 20
| {z }

segment1

,

9 > > > > = > > > > ;

win1

9 > > > > > > > = > > > > > > > ;

win2

23, 26,

pred
z }| {

29, 30, 28, 29, 32, 30, 31
| {z }

segment2

| . . .
|{z}

future

Fig. 6. Window adaptation when analysis spans both segments. Note: the smaller
window, win1, is likely to have better prediction accuracy because it includes less
erroneous data.

22, 33, 30, 27, 24, 20, 21, 20, 20
| {z }

segment1

,

win1
z }| {

23

9 > > > > > = > > > > > ;

win2

, 26, 29,

pred
z }| {

30, 28, 29, 32, 30, 31
| {z }

segment2

| . . .
|{z}

future

Fig. 7. Window adaptation when analysis spans both segments. Note: win1 and
win2 have contracted to include less erroneous data.

6 win1 and win2 have sizes of 4 and 5, respectively. As the prediction data,
pred, lies inside the second segment, it is likely that the dynamic generation
involving data window win1 has better prediction accuracy than that involv-
ing win2 because win1 includes less erroneous data. If this is so, the two
new windowsizes selected for win1 and win2 are sizes 3 and 4, respectively.
Thus, as the data windows slide to incorporate the next time series value,
they also contract to include a smaller number of spurious data. In figure 7
this contraction is shown.

After the data windows slide past the end of the first segment, they expand
again to encompass a greater number of appropriate data. Figures 8 and 9
depict this expansion.

As illustrated in the above example, DyFor GP uses predictive accuracy to
adapt the size of its training data automatically towards the optimal. Auto-
matic determination of an appropriate training window is beneficial for fore-
casting concerns in which the number of recent historical data whose under-
lying data generating process corresponds to the current environment is not



8 Neal Wagner and Zbigniew Michalewicz

22, 33, 30, 27, 24, 20, 21, 20, 20
| {z }

segment1

, 23,

win2
z }| {

26,

win1
z }| {

29, 30, 28,

pred
z }| {

29, 32, 30, 31
| {z }

segment2

| . . .
|{z}

future

Fig. 8. Window adaptation when analysis lies entirely inside the second segment.
Note: the larger data window, win2, is likely to have better prediction accuracy
because it includes a greater number of appropriate data.

22, 33, 30, 27, 24, 20, 21, 20, 20
| {z }

segment1

, 23,

win2
z }| {

26,

win1
z }| {

29, 30, 28, 29,

pred
z }| {

32, 30, 31
| {z }

segment2

| . . .
|{z}

future

Fig. 9. Window adaptation when analysis lies entirely inside the second segment.
Note: win1 and win2 have expanded to include a greater number of appropriate
data.

known. Furthermore, this adaptation takes place dynamically. This means that
as DyFor GP moves through (analyzes) historical time series data, the training
window expands or contracts depending on the environment encountered. In
the study conducted by Wagner and Michalewicz [42], DyFor GP with adap-
tive training data size is compared to conventional GP (with static training
data size) for forecasting performance. Experimental results show that DyFor
GP yields the more efficient forecasts. The following section describes how
population size can be controlled for GP forecasting applications.

3 Adapting the Population Size

Bloat in GP is the tendency for solution trees to grow large as they ap-
proach the optimal [30, 31]. Solutions may become so large that they exhaust
computer resources. Additionally, bloat hinders a GP model’s adaptability as
solutions become too specialized to adjust to changing conditions. Bloat is a
problem for any GP model regardless of the application [3]. GP evolves a pop-
ulation of solutions for a given problem and, thus, must contain some method
to control the number and size of solutions in the population. The standard
method of GP population control is due to Koza [29] and uses a static pop-
ulation cardinality and a maximum tree depth for solutions.4 However, this
method does not protect a GP model from bloat. If numerous solutions in

4 Koza [29] used population sizes of 500, 1000, and 2000 and maximum solution
tree depth of 17 in his early GP experiments.



Parameter Adaptation for GP Forecasting Applications 9

a population have full or nearly full trees of depth close to the maximum,
available resources may be exhausted. Additionally, the artificial limit for tree
depth prohibits the search process from exploring solutions of greater com-
plexity, which, especially for many real-world problems, may be solutions of
higher quality.

An alternative method for GP population control is presented Wagner and
Michalewicz [41] that allows natural growth of complex solutions in a setting
that more closely emulates the one found in nature. In nature the number of
organisms in a population is not static. From generation to generation, the
population cardinality changes depending on the quality and type of indi-
vidual organisms present. The proposed natural non-static population control
(NNPC) is based on a variable population cardinality with a limit on the total
number of tree nodes present in a population and no limit for solution tree
depth. This method addresses the following issues:

1. allowing natural growth of complex solutions of greater quality,
2. keeping resource consumption within some specified limit, and
3. allowing the population cardinality to vary naturally based on the make-

up of individual solutions present.

By not limiting the tree depth of individual solutions, natural evolution of
complex solutions is permitted. By restricting the total number of tree nodes
in a population, available resources are conserved. Thus, for a GP model that
employs NNPC, the number of solutions in a population grows or declines
naturally as the individual solutions in the population vary. This method is
described in more detail below.

NNPC works in the following way. Two node limits for a population are
specified as parameters: the soft node limit and the hard node limit. The soft
node limit is defined as the limit for adding new solutions to a population.
This means that if adding a new solution to a population causes the total
nodes present to exceed the soft node limit, then that solution is the last one
added. The hard node limit is defined as the absolute limit for total nodes in
a population. This means that if adding a new solution to a population causes
the total nodes present to exceed the hard node limit, then that solution may
be added only after it is repaired (the tree has been trimmed) so that the
total nodes present no longer exceeds this limit. During the selection process,
a count of the total nodes present in a population is maintained. Before adding
a new solution to a population, a check is made to determine if adding the
solution will increase the total nodes present beyond either of the specified
limits.

Wagner and Michalewicz [41] compare a GP forecasting model with NNPC
to one with the standard population control (SPC) method introduced by
Koza [29]. Observed results indicate that the model with NNPC was signifi-
cantly more efficient in its consumption of computer resources than the model
with SPC while the quality of forecasts produced by both models remained



10 Neal Wagner and Zbigniew Michalewicz

equivalent. The following section discusses the search for an optimal fitness
function for GP forecasting applications.

4 The Search for an Optimal Fitness Function

Evolution-based techniques such as GP require that some fitness function be
used to measure the quality of candidate solutions. However, it may not be
clear how to select such a measure for a particular problem. It may be that
a single measure performs well under certain conditions but badly in others.
Most GP forecasting applications use a mean squared error (MSE) fitness
function for model evolution. To date, there have been no significant studies
investigating alternative fitness functions for GP forecasting applications. One
alternative measure that might be considered is the mean absolute deviation
(MAD). Comparing the MSE and MAD measures, it can be seen that the
error value of MSE grows quicker than that of MAD when outlier data are
present. Thus, outliers tend to influence analyses based on MSE more than
they do analyses based on MAD. An outlier datum can represent one of two
possibilities: noise (which should be ignored or have reduced impact on model
construction) or new information representing a shift in the underlying pro-
cess. For series in which outlier data represent noise, MAD might be the more
effective measure. For series in which outlier data represent a process shift,
MSE might be preferable. The question of which measure to employ would
depend upon the characteristics of the time series to be forecast.

A novel fitness function is presented by Wagner and Michalewicz [42] that
incorporates aspects of both the MSE and MAD measures. The idea is to
use MSE when data encountered is not considered an outlier and MAD when
data encountered is considered an outlier. This new measure (called “CF” for
“combined fitness”) requires a user-specified parameter, Ω, to determine which
data are outliers and which are not. Figure 10 gives a graphical depiction of
the CF measure as a function of the relative error. From the figure, when the
relative error is within the threshold given by Ω, CF measure values follow
those of the squared error. However, when the relative error falls outside of
the Ω threshold, CF measure values follow those of the absolute deviation.

A number of new GP forecasting experiments were conducted on real data
to compare the MSE, MAD, and CF fitness functions. Here, we forecast the
U.S. Gross Domestic Product (GDP) using several relevant economic vari-
ables. The following three sections describe the GDP time series, experimental
setup, and observed results, respectively.

4.1 Forecasting the U.S. Gross Domestic Product

According to the U.S. Department of Commerce [39], the GDP is defined as
“the market value of goods and services produced by labor and property in the
United States.” The GDP is a metric frequently employed as a measure of the



Parameter Adaptation for GP Forecasting Applications 11

−Ω Ω

Fig. 10. The CF measure as a function of the relative error.

nation’s economy. The GDP series was selected because it is a widely-studied,
non-linear time series with a well-known set of explanatory variables. Figure
11 gives a graphical depiction of the quarterly GDP (growth) time series. In
the figure real GDP growth is calculated as a quarter-over-quarter annualized
percent change. A contemporary study conducted by Kitchen and Monaco

1950 1960 1970 1980 1990 2000

−10.0%

−5.0%

0.0%

5.0%

10.0%

15.0%

20.0%

Fig. 11. Gross Domestic Product (growth): 1947-2003.

[28] forecasts the GDP, a time series with quarterly frequency, using multiple
economic indicators that are measured monthly. Thirty indicators are utilized
in all and can be subdivided into the following categories: employment (6),
financial (4), survey (6), production and sales (12), and other (2). The results
of their study show that forecasting models constructed using these indicators
provided efficient forecasting performance for the period of 1995Q1 through
2003Q1.



12 Neal Wagner and Zbigniew Michalewicz

4.2 Experimental Setup

For this set of GP forecasting experiments, three fitness functions are com-
pared: MSE, MAD, and the CF measure described in section 4. Recall that
the CF measure requires that a parameter, Ω, be specified representing the
threshold between outlier and non-outlier data. For these experiments three
different settings of Ω are tested: one that is 5.0% of the median level of the
time series, one that is 7.5% of the median level, and one that is 10.0%.

29 of the 30 economic indicators listed in the Kitchen and Monaco’s GDP
forecasting study [28] are utilized as inputs5 by all competing models and the
outputs are one-step-ahead, quarterly forecasts for the current quarter when
only one month of historical data for that quarter is available. Historical GDP
data dating back to 1965Q1 is used for training the GP and one-step-ahead
forecasts for 1995Q1 through 2003Q1 are produced. Table 1 gives the GP
parameter values used by all competing models.

Table 1. GP parameter settings.

Parameter Value

crossover rate 0.9

reproduction rate 0.0

mutation rate 0.1

population size 1000

max. no. of generations 51

elitism used? yes

fitness function MSE/MAD/CF

All parameter values listed in table 1 were selected to match those used
by Koza [29] with the following exceptions.

1. Elitism (reproduction of the best solution of the population) is used.
2. Parameter values for “reproduction rate” and “mutation rate” were ex-

changed. This was done for two reasons: 1) increasing the mutation rate
allows for greater search-space exploration [33] and 2) decreasing the re-
production rate to zero was not thought to harm the effectiveness of the
evolutionary process since elitism is used.

Because the GP search process is a stochastic one, a set of GP runs is executed
rather than just a single run. Setsize = 20 is used for all GP forecasting
experiments executed here.

5 One of the indicators, “Business Week Production Index,” could not be obtained
at the time of the experiments.



Parameter Adaptation for GP Forecasting Applications 13

4.3 Results

As mentioned in the previous section, a set of runs is executed (setsize =
20) for each competing model. For a single run, forecasting performance is
measured by calculating the MSE of all forecasts. For a set of runs, forecasting
performance is measured by calculating the mean and standard deviation of
MSE values over all (20) runs. Table 2 gives the observed results for the GDP
experiments. In the table, the first column shows the fitness function used to
drive the GP process. Note that three separate experiments employing the CF
measure are shown, one for each of three Ω settings (5.0%, 7.5%, and 10.0%,
respectively).

Table 2. GDP forecasting results.

GP fitness function mean MSE std. dev.

MSE 4.96 1.62

MAD 4.46 1.42

CF(Ω = 5.0%) 3.99 1.19

CF(Ω = 7.5%) 3.69 0.70

CF(Ω = 10.0%) 3.96 1.19

Table 2 reveals some interesting results. All three CF fitness functions
outperform both the MSE and MAD fitness functions with the one utilizing
a 7.5% setting for Ω giving the best performance overall. Between the MSE
and MAD fitness functions, MAD yields the better forecasts.

The MAD fitness function’s better performance when compared to MSE
may mean that for the GDP series outlier data more frequently represents
noise rather than a shift in the underlying data generating process. The fact
that the CF fitness function outperforms both MSE and MAD may mean that
it is better able to distinguish noise from true process shifts and, thus, can
lessen the effect of noisy data and still respond to changes in the process.

The following section draws conclusions and discusses potential areas for
future work.

5 Conclusions and Future Work

In this paper, parameter adaptation for GP forecasting applications is dis-
cussed. Novel algorithms from recent studies are presented that seek to control
two significant GP parameters, training data size and population size. Addi-
tionally, GP fitness functions MSE and MAD are detailed and compared. A
new fitness function from a recent study that combines aspects of both the
MSE and MAD measures is described and new experiments are conducted
that compare the performance of this new measure, called the CF measure,



14 Neal Wagner and Zbigniew Michalewicz

with that of the MSE and MAD measures for a real time series of U.S. GDP
data. The CF measure is shown to give better forecasting performance than
MSE and MAD measures for the GDP series.

This CF measure contains a parameter, Ω, that represents a threshold be-
tween outlier and non-outlier data in a time series. The experiments presented
in this study test several different settings for Ω. Further studies might exam-
ine the CF measure for other time series and, perhaps, develop some algorithm
for adapting the Ω parameter toward its optimal setting.

Although the algorithm detailed here for adapting the training data size
is only applicable to GP forecasting applications, the described algorithm for
adapting the population size may be appropriate for other GP applications as
well. Future investigations could compare this adaptive population size to the
commonly-used static population size for several prevalent GP applications
such as circuit design, database query optimization, etc.

References

1. Andrew M. and Prager R. ‘Genetic programming for the acquistion of double
auction market strategies.’ Advances in Genetic Programming, vol. 1 (1994),
pg. 355-368.

2. Angeline P. ‘Genetic programming and emergent intelligence.’ Advances in Ge-
netic Programming, vol. 1 (1994), pg. 75-98.

3. Banzhaf W. and Langdon W. ‘Some considerations on the reason for bloat.’
Genetic Programming and Evolvable Machines, vol. 3 (2002), pg. 81-91.

4. Chambers L., editor. Practical Handbook of Genetic Algorithms: Applications.
CRC Press, 1995.

5. Chen S. and Yeh C. ‘Toward a computable approach to the efficient market
hypothesis: an application of genetic programming.’ Journal of Economics Dy-
namics and Control, vol. 21 (1996), pg. 1043-1063.

6. Chen S., Yeh C., and Lee W. ‘Option pricing with genetic programming.’ Ge-
netic Programming 1998: Proceedings of the Third Annual Conference, vol. 1
(1998), pg. 32-37.

7. Chiraphadhanakul S., Dangprasert P., and Avatchanakorn V. ‘Genetic algo-
rithms in forecasting commercial banks deposit.’ Proceedings of the IEEE In-
ternational Conference on Intelligent Processing Systems, vol. 1 (1997), pg. 557-
565.

8. Deboeck G., editor. Trading on the Edge: Neural, Genetic, and Fuzzy Systems
for Chaotic and Financial Markets. John Wiley and Sons, Inc., 1994.

9. Diebold F. Elements of Forecasting. International Thomson Publishing, 1998.
10. Fernandez T. and Evett M. ‘Training period size and evolved trading sys-

tems.’ Genetic Programming 1997: Proceedings of the Second Annual Confer-
ence, vol. 1 (1997), pg. 95.

11. Gately E. Neural Networks for Financial Forecasting. John Wiley and Sons,
Inc., 1996.

12. Gathercole C. and Ross P. ‘Small populations over many generations cand
beat large populations over few generations in genetic programming.’ Genetic



Parameter Adaptation for GP Forecasting Applications 15

Programming 1997: Proceedings of the Second Annual Conference, vol. 1 (1997),
pg. 111-118.

13. Goto Y., Yukita K., Mizuno K., and Ichiyanagi K. ‘Daily peak load forecast-
ing by structured representation on genetic algorithms for function fitting.’
Transactions of the Institute of Electrical Engineers of Japan, vol. 119 (1999),
pg. 735-736.

14. Hiden H., McKay B., Willis M., and Tham M. ‘Non-linear partial least squares
using gentic programming.’ Genetic Programming 1998: Proceedings of the
Third Annual Conference, vol. 1 (1998), pg. 128-133.

15. Iba H. and Sasaki T. ‘Using genetic programming to predict financial data.’
Proceedings of the Congress of Evolutionary Computation, vol. 1 (1999), pg. 244-
251.

16. Iba H. and Nikolaev N. ‘Genetic programming polynomial models of financial
data series.’ Proceedings of the 2000 Congress of Evolutionary Computation,
vol. 1 (2000), pg. 1459-1466.

17. Jeong B., Jung H., Park N. ‘A computerized causal forecasting system using
genetic algorithms in supply chain management.’ The Journal of Systems and
Software, vol. 60 (2002), pg. 223-237.

18. de Jong E., Watson R., and Pollack J. ‘Reducing bloat and promoting diversity
using multi-objective methods.’ Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO 2001), vol. 1 (2001), pg. 11-18.

19. Jonsson P. and Barklund J. ‘Characterizing signal behavior using genetic
programming.’ Evolutionary Computing: Lecture Notes in Computer Science,
vol. 1143 (1996), pg. 62-72.

20. Ju Y., Kim C., and Shim J. ‘Genetic based fuzzy models: interest rate forecast-
ing problem.’ Computers and Industrial Engineering, vol. 33 (1997), pg. 561-
564.

21. Kaboudan M. ‘Forecasting with computer-evolved model specifications: a ge-
netic programming application.’ Computer and Operations Research, vol. 30
(2003), pg. 1661-1681.

22. Kaboudan M. ‘Genetically evolved models and normality of their residuals.’
Journal of Economics Dynamics and Control, vol. 25 (2001), pg. 1719-1749.

23. Kaboudan M. ‘Forecasting stock returns using genetic programming in C++.’
Proceedings of 11th Annual Florida Artificial Intelligence International Research
Symposium, vol. 1 (1998), pg. 502-511.

24. Kaboudan M. ‘Genetic programming prediction of stock prices.’ Computational
Economics, vol. 6 (2000), pg. 207-236.

25. Kaboudan M. ‘Genetic evolution of regression models for business and economic
forecasting.’ Proceedings of the Congress of Evolutionary Computation, vol. 2
(1999), pg. 1260-1268.

26. Kaboudan M. ‘A measure of time series’ predictability using genetic program-
ming applied to stock returns.’ Journal of Forecasting, vol. 18 (1999), pg. 345-
357.

27. Kim D. and Kim C. ‘Forecasting time series with genetic fuzzy predictor en-
semble.’ IEEE Transactions on Fuzzy Systems, vol. 5 (1997), pg. 523-535.

28. Kitchen J. and Monaco R. ‘Real-time forecasting in practice.’ Business Eco-
nomics: the Journal of the National Association of Business Economists, vol. 38
(2003), pg. 10-19.

29. Koza J. Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, 1992.



16 Neal Wagner and Zbigniew Michalewicz

30. Langdon W. ‘The evolution of size in variable length representations.’ 1998
IEEE International Conference of Evolutionary Computation, vol. 1 (1998),
pg. 633-638.

31. Langdon W. and Poli R. ‘Fitness causes bloat.’ Soft Computing in Engineering
Design and Manufacturing, vol. 1 (1997), pg. 13-22.

32. Lee D., Lee B., and Chang S. ‘Genetic programming model for long-term fore-
casting of electric power demand.’ Electric Power Systems Research, vol. 40
(1997), pg. 17-22.

33. Michalewicz Z. Genetic Algorithms + Data Structures = Evolution Programs.
Springer-Verlag, 1992.

34. Eiben A., Hinterding R., and Michalewicz Z. ‘Parameter control in evolutionary
algorithms.’ IEEE Transactions on Evolutionary Computation, vol. 3 (1999),
pg. 124-141.

35. Mulloy B., Riolo R., and Savit R. ‘Dynamics of genetic programming and
chaotic time series prediction.’ Genetic Programming 1996: Proceedings of the
First Annual Conference, vol. 1 (1996), pg. 166-174.

36. Neely C. and Weller P. ‘Predicting exchange rate volatility: genetic program-
ming versus GARCH and RiskMetricsTM.’ The Federal Reserve Bank of St.
Louis, (2002).

37. Smith K., Gupta J. Neural Networks in Business: Techniques and Applications.
Idea Group Pub., 2002.

38. Trippi R., Turban E., editors. Neural Networks in Finance and Investing: Using
Artificial Intelligence to Improve Real-World Performance. Irwin Professional
Pub., 1996.

39. U.S. Department of Commerce Bureau of Economic Analysis. http://
www.bea.doc.gov/bea/glossary/glossary g.htm, 2004.

40. Venkatesan R. and Kumar V. ‘A genetic algorithms approach to growth phase
forecasting of wireless subscribers.’ International Journal of Forecasting, vol. 18
(2002), pg. 625-646.

41. Wagner N. and Michalewicz Z. ‘Genetic programming with efficient population
control for financial times series prediction.’ 2001 Genetic and Evolutionary
Computation Conference Late Breaking Papers, vol. 1 (2001), pg. 458-462.

42. Wagner N., Michalewicz Z., Khouja M., and McGregor R. ‘Time series forecast-
ing for dynamic environments: the DyFor genetic program model.’ To appear
in IEEE Transactions on Evolutionary Computation, 2006.


