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Abstract 
 

 

Genetic Programming (GP) uses variable size 
representations as solutions.  The size of 
individual solutions in a population can influence 
the efficiency of the search process.  The 
research presented in this paper compares an 
alternative method for GP population control to 
the method commonly found in the literature for 
the task of financial time series prediction.  It is 
shown that the alternative method gives 
comparable results with significantly more 
efficient use of computer resources. 

1 INTRODUCTION 
In Genetic Programming (GP), solutions are represented 
as trees of variable size and depth.  The GP population 
control method commonly found in the literature is due to 
[Koza, 1992].  This method specifies a static population 
number and a maximum tree depth1.  This method appears 
to be unsuitable for many real-world problems because it 
does not allow solutions to grow naturally past a certain 
point (tree depth), and, thus, solutions of greater 
complexity are never considered even though these 
solutions may be of higher quality.  Additionally, the 
method, although restricting the depth of a solution, 
places no restriction on the size (number of nodes) of a 
solution.  This allows the possibility for many large 
solutions in a population, which in turn causes a 
significant consumption of computer resources. 

GP has been applied to the task of time series prediction 
by [Koza, 1992], [Oakley, 1994], [Iba et al, 1993], 
[Mulloy, Riolo, and Savit, 1996] and others.  However, no 
studies have investigated alternative methods of GP 
population control for time series prediction.  
________________ 
1The method used by [Koza, 1992] is described in more detail in section 
2.2 of this paper. 

All investigations have used the method proposed by 
[Koza, 1992].   

This paper presents a new method for GP population 
control and compares it to Koza’s method on several 
financial time series.  The rest of this paper is structured 
as follows.  Section 2 explains the problem of time series 
prediction and reviews in more detail Koza’s method for 
GP population control.  Section 3 describes in detail the 
alternative method for GP population control and all other 
methods and parameters used in this study.  Section 4 
presents results, and section 5 summarizes the study and 
discusses possible future studies. 

2 BACKGROUND  

2.1 TIME SERIES PREDICTION 
The problem of time series prediction is this: given values 
of the past, x, one must find a function, f, which predicts 
values of the future.  Past values, x(t – i), can be 
considered as a vector,  

 x(t) = ( x(t), x(t – 1), …, x(t – i) ). 

Future values, x(t + j), are estimated by a function of 
previous values, f(x(t)).  In this paper we consider the 
problem of searching for f(x(t)) given the vector 

 x(t) = ( x(t), x(t – 1), …, x(t – i) )  (for i=9), 

which will predict the actual value x(t + 1).  

To evaluate how close a particular function is to 
predicting the actual value of a time series, one must 
impose a metric.  A simple method, and the one used for 
this paper, is to calculate the squared error between the 
actual time series value and the predicted value, 

 SE = ( x(t + 1) - f(x(t)) ) 2. 

In GP a solution (for time series prediction this is a 
function) is evaluated for some number of test cases.  The 
fitness of a solution can be determined by taking the mean 
of the squared errors for all test cases, 
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where N is the number of test cases and t and T 
correspond to the time series data of the first and last test 
cases, respectively.  Fitter individuals have lower MSE 
values (with the lowest possible MSE value being zero). 

To measure the predictive performance of a solution, the 
following method is used.  First, a vector of past time 
series values for the last (most recent) test case is applied 
to the solution (function) and the predicted future value, 
x(t + 1), is calculated.  Then this predicted value is 
appended to the past values to produce a new vector 
which is again applied to the solution to generate the next 
predicted future value, x(t + 2).  This process is continued 
until the desired number of future values to predict is 
generated.  Finally, the mean of the squared errors 
between the actual time series values and the predicted 
values is calculated.  For this paper the number of future 
values to predict is 5, that is this process is used to 
generate future values x(t + 1), …, x(t + 5). 

2.2 KOZA’S METHOD FOR GP POPULATION 
CONTROL 

Koza’s [Koza, 1992] method for GP population control 
(KPC) uses a static population number, usually 500, 1000, 
or 2000 depending on the complexity of the problem, and 
a maximum tree depth of 17 for individual solutions in the 
population.  This limit for tree depth prohibits the search 
process from exploring solutions of greater complexity, 
which, for many real-world problems, may be solutions of 
higher quality.  This limit does not, however, necessarily 
limit the size (number of nodes) of solutions.  Therefore, 
if numerous solutions in a population have full or nearly 
full trees of depth close to the maximum, available 
resources may be strained or exhausted.  

3 METHODS 

3.1 AN ALTERNATIVE METHOD FOR GP 
POPULATION CONTROL  

An alternative method for GP population control (APC) is 
proposed that is based on a non-static population number 
with a limit for the total number of nodes present in a 
population and no limit for solution tree depth.  This 
method addresses the following issues: 1) allowing 
natural growth of complex solutions of greater quality and 
2) keeping resource consumption within some specified 
limit.  By not limiting the tree depth of individual 
solutions, natural evolution of complex solutions is 
permitted.  By restricting the total number of nodes in a 
population, available resources are conserved.  The 
method is described in more detail below. 

The APC based on limiting the total nodes present in a 
population works in the following way.  Two node limits 
for a population are specified (as parameters): 1) the soft 
node limit and 2) the hard node limit.  The soft node limit 
is defined as the limit for adding new individuals to a 
population.  This means that if adding a new individual to 

a population causes the total nodes present to exceed the 
soft node limit, then that individual may be added but no 
more individuals may be added afterwards.  The hard 
node limit is defined as the absolute limit for total nodes 
in a population.  This means that if adding a new 
individual to a population causes the total nodes present 
to exceed the hard node limit, then that individual may be 
added only after it is repaired (nodes have been trimmed) 
so that the total nodes present does not exceed the limit.  
During the selection process of the genetic program, a 
count of the total nodes present in a population is 
maintained.  Before adding a new individual to a 
population, a check is made to determine if adding the 
individual will increase the total nodes present beyond 
either of the specified limits.  

3.2 GP PARAMETERS  
As explained previously, the task of time series prediction 
is accomplished by using previous values of a time series 
to predict future values.  Therefore, the GP terminal set 
will consist of previous values of the time series.  The 
terminal set2 used for this paper employs the ten previous 
values and a random constant, 

 T = { x(t), x(t – 1), …, x(t – 9), ℜ }. 

The random constant ranges from [-1000, 1000].  The 
requirement of the function set is the ability to produce 
nonlinear expressions.  Thus, the function set3 used is  

 F = { +, −, ∗, % }, 

where % represents protected division4.  Fitness is 
determined by comparing the values returned by a GP 
solution tree to each value of 80 test cases (i.e., 80 time 
series data points).  The objective function to be 
minimized is the mean of the squared errors between the 
actual time series value and the GP predicted value for all 
test cases, 

 � +∗= T
t

2 )  (t))f( -  1)  x(t (N1MSE x , 

where the variables of the above equation are as described 
in section 2.1. 

The GP parameters used that are not related to either of 
the population control methods already described are 
shown in Table 1.  These parameters are the same 
parameters that [Koza, 1992] uses except where noted.  
The parameters used that are related to the population 
control methods already described are shown in Table 2. 
As in Koza’s experiments, the values chosen for these 
parameters are not intended to be optimal, only sufficient 
for  comparison  of  the  two  population  control  methods 

________________ 
2This terminal set may not be optimal.  Choosing the optimal set is an 
area that deserves further research, but it is not the purpose of this paper. 

3This function set may not be optimal.  See footnote 2 for further 
explanation. 

4Protected division returns 1.0 if the denominator is 0 and returns the 
result of division otherwise [Koza, 1992]. 



previously described.  The following is a detailed 
discussion of the parameters related to the population 
control methods.  

 

Table 1: GP parameters that are not related to either of the 
population control methods being compared. 

Maximum number of generations to be run = 51. 

Probability of crossover = 90%. 

Probability of reproduction = 10%. 

Probability of choosing internal points for crossover = 
90%. 

Maximum depth for initial random solution trees = 6. 

Probability of mutation = 0%. 

Generative method for initial random population is 
ramped half-and-half. 

Basic selection method is fitness proportionate. 

Spousal selection method is fitness proportionate. 

Elitist strategy5 is used. 

 

Table 2: GP parameters that are related to the population 
control methods being compared. 

KPC (static population 
with maximum solution 
tree depth). 

APC (limiting total nodes 
present in a population). 

Population size6 = 1000. 

Maximum depth for 
solution trees created 
during the run = 17. 

Soft node limit = 25,000. 

Hard node limit = 35,000. 

Population size is 
unspecified (non-static). 

No maximum depth for 
solution trees created 
during the run. 

 

The parameter values chosen for KPC are the same values 
that [Koza, 1992] uses.  The parameter values of APC 
were chosen in the following way.  20 pre-experiment 
runs were made for each time series to be used in the 
actual experiment.  These pre-experiment runs were made 
with parameter values as shown in column 1 of Table 2 
(KPC).  During each run, counts of the total number of 
nodes present in the initial and final populations were 
kept.  It was seen that the average total number of nodes 
present in the initial and final population  of  all  runs  was  

 ________________ 
5[Koza, 1992] does not use elitism.  [Mulloy, Riolo, and Savit, 1996] 
report that GP generally lost its best trees the generation after they were 
found.  Thus, elitism is used to remedy this problem. 

6[Koza, 1992] uses population size of 1000 or 2000 for problems of 
greater complexity.  The problem of predicting real-world time series 
seems to be complex enough to warrant such a population size. 

~12,500 and ~140,000 respectively.  Therefore, the soft 
node limit parameter was chosen as approximately twice 
the average for the initial population and the hard node 
limit parameter was chosen as only 10,000 nodes greater 
than the soft node limit (significantly less than the 
average for the final population).  The purpose of the pre-
experiment runs was to discover fair values for the soft 
and hard node limits.  This task can be hard to accomplish 
in any precise manner because KPC does not control the 
total number of nodes in a population at any given 
generation.  Thus, the relatively small values chosen for 
these limits (less than half the average for total nodes 
present in the final population of all pre-experiment runs) 
are an attempt to err on the side favoring KPC. 

4 RESULTS 
The results shown are based on 20 runs for each 
experimental condition.  Each of the 20 runs has a 
different initial population.  Table 3 shows the 10 
financial time series chosen for the prediction task using 
GP.  A total of 95 data points are used for each time series 
with starting and ending dates of July 31, 2000 and 
December 12, 2000 respectively.  The first 90 data points 
are used as training (80 test cases with 10 past values for 
the initial test case) and the final 5 data points for testing.  

 

Table 3: The 10 financial time series chosen for the 
prediction task. 

Delta Airlines, Inc. (DAL) 

US Airways Group, Inc. (U) 

Ingles Markets, Inc. (IMKTA) 

Win-Dixie Stores, Inc. (WIN) 

Chevron Corporation (CHV) 

Microsoft Corporation (MSFT) 

Sun Microsystems, Inc. (SUNW) 

Dow Jones Industrial Average (DJI^) 

S&P 500 Index (SPC^) 

PG&E Corporation (PCG) 

 

Table 4 shows the following results for each time series 
and population control method:  

1) The average mean squared test error (AMS),  

2) The mean squared test error of the best run 
(BMS),  

3) The total number of aberrant runs7 (#AR). 

________________ 
7The meaning of an aberrant run is discussed later in this section. 

 

 



Table 5 shows the following results for each time series 
and population control method: 

1) The average total number of nodes present in the 
final population (A#N), 

2) The total number of trivial runs8 (#TR). 

 

Table 4: Results from KPC and APC runs. 

Time 
Series / 
Method 

KPC APC 

 AMS BMS #AR AMS BMS #AR 

DAL 1.32 1.16 2 1.62 1.16 2 

U 11.36 8.58 0 12.64 10.93 0 

IMKTA 0.09 0.07 0 0.14 0.07 0 

WIN 1.54 1.20 0 1.38 0.89 0 

CHV 0.65 0.63 1 0.76 0.61 1 

MSFT 17.22 12.82 0 16.29 8.23 0 

SUNW 64.83 46.44 0 60.60 31.92 0 

DJI^ 43007 13545 2 45742 36118 0 

SPC^ 391.5 233.8 0 329.8 240.3 2 

PCG 9.81 7.57 0 10.32 7.50 0 

 

The following is an explanation of the meaning of trivial 
and aberrant runs.  Some runs produced trivial results.  A 
trivial run means that the best solution tree of the final 
generation is a one-node tree consisting of the terminal 
x(t) (the most recent past value).  A   few   runs   produced 
aberrant results.  An aberrant run means that the mean 
squared test error for that run differs from that of other 
runs with the same experimental conditions by an order of 
magnitude.  When calculating the values for AMS and 
BMS of Table 4 and for A#N of Table 5, trivial and 
aberrant runs were disregarded. 

As shown in Table 4, the average and best mean squared 
test errors for KPC and APC are comparable for each time 
series tested.  Also shown in Table 4, the number of 
aberrant runs produced by KPC and APC are the same 
(each produced 5 aberrant runs out of a total of 200 runs).  
However, as shown in Table 5, KPC and APC give 
significantly different values for the average total number 
of nodes present in the final population and the number of 
trivial runs.  The average total number of nodes present in 
the final population for APC is near 25,000 (the specified 
soft node limit) for each time series while that of KPC 
ranges from 40,567 to 224,629.  In fact, some KPC runs 
exhausted computer memory and aborted before 
completing the maximum number of generations.  KPC 
also produced 91 trivial runs while APC produced only 13  

________________ 

8The meaning of a trivial run is discussed later in this section. 

Table 5: Results from KPC and APC runs. 

Time 
Series / 
Method 

KPC APC 

 A#N #TR A#N #TR 

DAL 153,783 10 25,397 0 

U 212,444 14 25,349 2 

IMKTA 59,225 13 25,275 7 

WIN 124,662 9 25,320 0 

CHV 40,567 16 25,190 1 

MSFT 164,391 8 25,208 0 

SUNW 161,312 10 25,238 2 

DJI^ 224,629 3 25,264 0 

SPC^ 186,654 2 25,225 0 

PCG 61,287 6 25,214 1 

 

(out of 200).  The reason for this difference in the number 
of trivial runs may be because KPC does not allow 
solution trees to grow naturally past depth 17, and, thus, 
does not explore more complex solutions that may be 
better than the trivial solution.  A run that ends with a 
trivial solution may be considered as a waste of computer 
resources because those resources may have been put to 
use to find a more complex solution of higher quality. 

5 CONCLUSIONS AND FUTURE WORK 
The following is a summary of the investigation.  Two 
population control methods, KPC, which uses a static 
population number and a maximum solution tree depth, 
and APC, which limits the total number of nodes present 
in a population, were compared for the task of time series 
prediction of several financial time series using GP.  It is 
shown that both methods give comparable results, but 
APC is significantly more efficient in its use of computer 
resources.  This more efficient use of computer resources 
manifests itself in two ways: 1) using less computer 
memory and 2) producing fewer trivial runs. 

[Mulloy, Riolo, and Savit, 1996] report that a new 
crossover operator that forbids one-node tree crossovers 
(FONTX) successfully avoids premature convergence to 
trivial solution trees.  One possible direction for future 
work is to combine this crossover operator with the 
alternative population control method investigated in this 
paper.  Another direction may be to use a more 
sophisticated fitness measure that guides the search 
process to solution trees that are less complex but 
sufficiently accurate such as the one proposed by [Zhang 
and Mühlenbein, 1995].   
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