
 Genetic Programming with Efficient Population Control for Financial
Time Series Prediction

Neal Wagner
Computer Science Department
University of North Carolina at

Charlotte
Charlotte, NC 28223 USA

nwagner@uncc.edu

Zbigniew Michalewicz
Computer Science Department
University of North Carolina at

Charlotte
Charlotte, NC 28223 USA

zbyszek@uncc.edu

Abstract

Genetic Programming (GP) uses variable size
representations as solutions. The size of
individual solutions in a population can influence
the efficiency of the search process. The
research presented in this paper compares an
alternative method for GP population control to
the method commonly found in the literature for
the task of financial time series prediction. It is
shown that the alternative method gives
comparable results with significantly more
efficient use of computer resources.

1 INTRODUCTION
In Genetic Programming (GP), solutions are represented
as trees of variable size and depth. The GP population
control method commonly found in the literature is due to
[Koza, 1992]. This method specifies a static population
number and a maximum tree depth1. This method appears
to be unsuitable for many real-world problems because it
does not allow solutions to grow naturally past a certain
point (tree depth), and, thus, solutions of greater
complexity are never considered even though these
solutions may be of higher quality. Additionally, the
method, although restricting the depth of a solution,
places no restriction on the size (number of nodes) of a
solution. This allows the possibility for many large
solutions in a population, which in turn causes a
significant consumption of computer resources.

GP has been applied to the task of time series prediction
by [Koza, 1992], [Oakley, 1994], [Iba et al, 1993],
[Mulloy, Riolo, and Savit, 1996] and others. However, no
studies have investigated alternative methods of GP
population control for time series prediction.

1The method used by [Koza, 1992] is described in more detail in section
2.2 of this paper.

All investigations have used the method proposed by
[Koza, 1992].

This paper presents a new method for GP population
control and compares it to Koza’s method on several
financial time series. The rest of this paper is structured
as follows. Section 2 explains the problem of time series
prediction and reviews in more detail Koza’s method for
GP population control. Section 3 describes in detail the
alternative method for GP population control and all other
methods and parameters used in this study. Section 4
presents results, and section 5 summarizes the study and
discusses possible future studies.

2 BACKGROUND

2.1 TIME SERIES PREDICTION
The problem of time series prediction is this: given values
of the past, x, one must find a function, f, which predicts
values of the future. Past values, x(t – i), can be
considered as a vector,

 x(t) = (x(t), x(t – 1), …, x(t – i)).

Future values, x(t + j), are estimated by a function of
previous values, f(x(t)). In this paper we consider the
problem of searching for f(x(t)) given the vector

 x(t) = (x(t), x(t – 1), …, x(t – i)) (for i=9),

which will predict the actual value x(t + 1).

To evaluate how close a particular function is to
predicting the actual value of a time series, one must
impose a metric. A simple method, and the one used for
this paper, is to calculate the squared error between the
actual time series value and the predicted value,

 SE = (x(t + 1) - f(x(t))) 2.

In GP a solution (for time series prediction this is a
function) is evaluated for some number of test cases. The
fitness of a solution can be determined by taking the mean
of the squared errors for all test cases,

 � +∗= T
t

2) (t))f(- 1) x(t (N1MSE x ,

where N is the number of test cases and t and T
correspond to the time series data of the first and last test
cases, respectively. Fitter individuals have lower MSE
values (with the lowest possible MSE value being zero).

To measure the predictive performance of a solution, the
following method is used. First, a vector of past time
series values for the last (most recent) test case is applied
to the solution (function) and the predicted future value,
x(t + 1), is calculated. Then this predicted value is
appended to the past values to produce a new vector
which is again applied to the solution to generate the next
predicted future value, x(t + 2). This process is continued
until the desired number of future values to predict is
generated. Finally, the mean of the squared errors
between the actual time series values and the predicted
values is calculated. For this paper the number of future
values to predict is 5, that is this process is used to
generate future values x(t + 1), …, x(t + 5).

2.2 KOZA’S METHOD FOR GP POPULATION
CONTROL

Koza’s [Koza, 1992] method for GP population control
(KPC) uses a static population number, usually 500, 1000,
or 2000 depending on the complexity of the problem, and
a maximum tree depth of 17 for individual solutions in the
population. This limit for tree depth prohibits the search
process from exploring solutions of greater complexity,
which, for many real-world problems, may be solutions of
higher quality. This limit does not, however, necessarily
limit the size (number of nodes) of solutions. Therefore,
if numerous solutions in a population have full or nearly
full trees of depth close to the maximum, available
resources may be strained or exhausted.

3 METHODS

3.1 AN ALTERNATIVE METHOD FOR GP
POPULATION CONTROL

An alternative method for GP population control (APC) is
proposed that is based on a non-static population number
with a limit for the total number of nodes present in a
population and no limit for solution tree depth. This
method addresses the following issues: 1) allowing
natural growth of complex solutions of greater quality and
2) keeping resource consumption within some specified
limit. By not limiting the tree depth of individual
solutions, natural evolution of complex solutions is
permitted. By restricting the total number of nodes in a
population, available resources are conserved. The
method is described in more detail below.

The APC based on limiting the total nodes present in a
population works in the following way. Two node limits
for a population are specified (as parameters): 1) the soft
node limit and 2) the hard node limit. The soft node limit
is defined as the limit for adding new individuals to a
population. This means that if adding a new individual to

a population causes the total nodes present to exceed the
soft node limit, then that individual may be added but no
more individuals may be added afterwards. The hard
node limit is defined as the absolute limit for total nodes
in a population. This means that if adding a new
individual to a population causes the total nodes present
to exceed the hard node limit, then that individual may be
added only after it is repaired (nodes have been trimmed)
so that the total nodes present does not exceed the limit.
During the selection process of the genetic program, a
count of the total nodes present in a population is
maintained. Before adding a new individual to a
population, a check is made to determine if adding the
individual will increase the total nodes present beyond
either of the specified limits.

3.2 GP PARAMETERS
As explained previously, the task of time series prediction
is accomplished by using previous values of a time series
to predict future values. Therefore, the GP terminal set
will consist of previous values of the time series. The
terminal set2 used for this paper employs the ten previous
values and a random constant,

 T = { x(t), x(t – 1), …, x(t – 9), ℜ }.

The random constant ranges from [-1000, 1000]. The
requirement of the function set is the ability to produce
nonlinear expressions. Thus, the function set3 used is

 F = { +, −, ∗, % },

where % represents protected division4. Fitness is
determined by comparing the values returned by a GP
solution tree to each value of 80 test cases (i.e., 80 time
series data points). The objective function to be
minimized is the mean of the squared errors between the
actual time series value and the GP predicted value for all
test cases,

 � +∗= T
t

2) (t))f(- 1) x(t (N1MSE x ,

where the variables of the above equation are as described
in section 2.1.

The GP parameters used that are not related to either of
the population control methods already described are
shown in Table 1. These parameters are the same
parameters that [Koza, 1992] uses except where noted.
The parameters used that are related to the population
control methods already described are shown in Table 2.
As in Koza’s experiments, the values chosen for these
parameters are not intended to be optimal, only sufficient
for comparison of the two population control methods

2This terminal set may not be optimal. Choosing the optimal set is an
area that deserves further research, but it is not the purpose of this paper.

3This function set may not be optimal. See footnote 2 for further
explanation.

4Protected division returns 1.0 if the denominator is 0 and returns the
result of division otherwise [Koza, 1992].

previously described. The following is a detailed
discussion of the parameters related to the population
control methods.

Table 1: GP parameters that are not related to either of the
population control methods being compared.

Maximum number of generations to be run = 51.

Probability of crossover = 90%.

Probability of reproduction = 10%.

Probability of choosing internal points for crossover =
90%.

Maximum depth for initial random solution trees = 6.

Probability of mutation = 0%.

Generative method for initial random population is
ramped half-and-half.

Basic selection method is fitness proportionate.

Spousal selection method is fitness proportionate.

Elitist strategy5 is used.

Table 2: GP parameters that are related to the population
control methods being compared.

KPC (static population
with maximum solution
tree depth).

APC (limiting total nodes
present in a population).

Population size6 = 1000.

Maximum depth for
solution trees created
during the run = 17.

Soft node limit = 25,000.

Hard node limit = 35,000.

Population size is
unspecified (non-static).

No maximum depth for
solution trees created
during the run.

The parameter values chosen for KPC are the same values
that [Koza, 1992] uses. The parameter values of APC
were chosen in the following way. 20 pre-experiment
runs were made for each time series to be used in the
actual experiment. These pre-experiment runs were made
with parameter values as shown in column 1 of Table 2
(KPC). During each run, counts of the total number of
nodes present in the initial and final populations were
kept. It was seen that the average total number of nodes
present in the initial and final population of all runs was

5[Koza, 1992] does not use elitism. [Mulloy, Riolo, and Savit, 1996]
report that GP generally lost its best trees the generation after they were
found. Thus, elitism is used to remedy this problem.

6[Koza, 1992] uses population size of 1000 or 2000 for problems of
greater complexity. The problem of predicting real-world time series
seems to be complex enough to warrant such a population size.

~12,500 and ~140,000 respectively. Therefore, the soft
node limit parameter was chosen as approximately twice
the average for the initial population and the hard node
limit parameter was chosen as only 10,000 nodes greater
than the soft node limit (significantly less than the
average for the final population). The purpose of the pre-
experiment runs was to discover fair values for the soft
and hard node limits. This task can be hard to accomplish
in any precise manner because KPC does not control the
total number of nodes in a population at any given
generation. Thus, the relatively small values chosen for
these limits (less than half the average for total nodes
present in the final population of all pre-experiment runs)
are an attempt to err on the side favoring KPC.

4 RESULTS
The results shown are based on 20 runs for each
experimental condition. Each of the 20 runs has a
different initial population. Table 3 shows the 10
financial time series chosen for the prediction task using
GP. A total of 95 data points are used for each time series
with starting and ending dates of July 31, 2000 and
December 12, 2000 respectively. The first 90 data points
are used as training (80 test cases with 10 past values for
the initial test case) and the final 5 data points for testing.

Table 3: The 10 financial time series chosen for the
prediction task.

Delta Airlines, Inc. (DAL)

US Airways Group, Inc. (U)

Ingles Markets, Inc. (IMKTA)

Win-Dixie Stores, Inc. (WIN)

Chevron Corporation (CHV)

Microsoft Corporation (MSFT)

Sun Microsystems, Inc. (SUNW)

Dow Jones Industrial Average (DJI^)

S&P 500 Index (SPC^)

PG&E Corporation (PCG)

Table 4 shows the following results for each time series
and population control method:

1) The average mean squared test error (AMS),

2) The mean squared test error of the best run
(BMS),

3) The total number of aberrant runs7 (#AR).

7The meaning of an aberrant run is discussed later in this section.

Table 5 shows the following results for each time series
and population control method:

1) The average total number of nodes present in the
final population (A#N),

2) The total number of trivial runs8 (#TR).

Table 4: Results from KPC and APC runs.

Time
Series /
Method

KPC APC

 AMS BMS #AR AMS BMS #AR

DAL 1.32 1.16 2 1.62 1.16 2

U 11.36 8.58 0 12.64 10.93 0

IMKTA 0.09 0.07 0 0.14 0.07 0

WIN 1.54 1.20 0 1.38 0.89 0

CHV 0.65 0.63 1 0.76 0.61 1

MSFT 17.22 12.82 0 16.29 8.23 0

SUNW 64.83 46.44 0 60.60 31.92 0

DJI^ 43007 13545 2 45742 36118 0

SPC^ 391.5 233.8 0 329.8 240.3 2

PCG 9.81 7.57 0 10.32 7.50 0

The following is an explanation of the meaning of trivial
and aberrant runs. Some runs produced trivial results. A
trivial run means that the best solution tree of the final
generation is a one-node tree consisting of the terminal
x(t) (the most recent past value). A few runs produced
aberrant results. An aberrant run means that the mean
squared test error for that run differs from that of other
runs with the same experimental conditions by an order of
magnitude. When calculating the values for AMS and
BMS of Table 4 and for A#N of Table 5, trivial and
aberrant runs were disregarded.

As shown in Table 4, the average and best mean squared
test errors for KPC and APC are comparable for each time
series tested. Also shown in Table 4, the number of
aberrant runs produced by KPC and APC are the same
(each produced 5 aberrant runs out of a total of 200 runs).
However, as shown in Table 5, KPC and APC give
significantly different values for the average total number
of nodes present in the final population and the number of
trivial runs. The average total number of nodes present in
the final population for APC is near 25,000 (the specified
soft node limit) for each time series while that of KPC
ranges from 40,567 to 224,629. In fact, some KPC runs
exhausted computer memory and aborted before
completing the maximum number of generations. KPC
also produced 91 trivial runs while APC produced only 13

8The meaning of a trivial run is discussed later in this section.

Table 5: Results from KPC and APC runs.

Time
Series /
Method

KPC APC

 A#N #TR A#N #TR

DAL 153,783 10 25,397 0

U 212,444 14 25,349 2

IMKTA 59,225 13 25,275 7

WIN 124,662 9 25,320 0

CHV 40,567 16 25,190 1

MSFT 164,391 8 25,208 0

SUNW 161,312 10 25,238 2

DJI^ 224,629 3 25,264 0

SPC^ 186,654 2 25,225 0

PCG 61,287 6 25,214 1

(out of 200). The reason for this difference in the number
of trivial runs may be because KPC does not allow
solution trees to grow naturally past depth 17, and, thus,
does not explore more complex solutions that may be
better than the trivial solution. A run that ends with a
trivial solution may be considered as a waste of computer
resources because those resources may have been put to
use to find a more complex solution of higher quality.

5 CONCLUSIONS AND FUTURE WORK
The following is a summary of the investigation. Two
population control methods, KPC, which uses a static
population number and a maximum solution tree depth,
and APC, which limits the total number of nodes present
in a population, were compared for the task of time series
prediction of several financial time series using GP. It is
shown that both methods give comparable results, but
APC is significantly more efficient in its use of computer
resources. This more efficient use of computer resources
manifests itself in two ways: 1) using less computer
memory and 2) producing fewer trivial runs.

[Mulloy, Riolo, and Savit, 1996] report that a new
crossover operator that forbids one-node tree crossovers
(FONTX) successfully avoids premature convergence to
trivial solution trees. One possible direction for future
work is to combine this crossover operator with the
alternative population control method investigated in this
paper. Another direction may be to use a more
sophisticated fitness measure that guides the search
process to solution trees that are less complex but
sufficiently accurate such as the one proposed by [Zhang
and Mühlenbein, 1995].

References
[Bäck, 1998] Bäck, Th. 1998. On the behavior of

evolutionary algorithms in dynamic environments.
Proceedings of the 5th IEEE Conference on
Evolutionary Computation, pages 446-451, IEEE
Press.

[Bäck, Fogel, and Michalewicz, 1997] Bäck, Th., Fogel,
D., and Michalewicz Z. 1997. Handbook of
Evolutionary Computation. Institute of Physics
Publishing Ltd, Bristol and Oxford University Press.

[Casdagli, 1989] Casdagli, Martin. 1989. Nonlinear
Prediction of Chaotic Time Series. Physica D,
35:335-356.

[Eiben, Hinterding, and Michalewicz, 1999] Eiben, A.E.,
Hinterding, R., and Michalewicz, Z. 1999. Parameter
Control in Evolutionary Algorithms. IEEE
Transactions on Evolutionary Computation,
3(2):124-141.

[Goldberg, Deb, and Clark, 1992] Goldberg, D.E., Deb,
K., and Clark, J.H. 1992. Genetic algorithms, noise,
and the sizing of populations. Complex Systems,
6:333-362.

[Hinterding, Michalewicz, and Eiben, 1997] Hinterding,
R., Michalewicz, Z., and Eiben, A. E. 1997.
Adaptation in evolutionary computation: A survey.
Proceedings of the 4th IEEE Conference on
Evolutionary Computation, pages 65-69, IEEE Press.

[Iba et al, 1993] Iba, Hitoshi, Takio Kuita, Hugo de Garis
and Taisuke Sato. 1993. System Identification using
Structured Genetic Algorithms. In Forest, Stephanie.
(editor). Proceedings of the Fifth International
Conference on Genetic Algorithms, pages 279-286,
Morgan Kaufmann.

[Kaboudan, 1999] Kaboudan, M. A. 1999. A Measure of
Time Series’ Predictability Using Genetic
Programming Applied to Stock Returns. Journal of
Forecasting, 18:345-357.

[Koza, 1992] Koza, John. 1992. Genetic Programming.
The MIT Press.

[Michalewicz, 1996] Michalewicz, Z. 1996. Genetic
Algorithms + Data Structures = Evolution Programs.
3rd edition, Springer-Verlag.

[Mulloy, Riolo, and Savit, 1996] Mulloy, Brian S., Riolo,
Rick L., Savit, Robert S. 1996. Dynamics of Genetic
Programming and Chaotic Time Series Prediction.
Genetic Programming: Proceedings of the First
Annual Conference, pages 166-174, The MIT Press.

[Oakley, 1994] Oakley, Howard. 1994. Two Scientific
Applications of Genetic Programming: Stack Filters
and Non-Linear Equation Fitting to Chaotic Data. In
Kinnear, Kim (editor). Advances in Genetic
Programming, pages 369-389, The MIT Press.

[Zhang and Mühlenbein, 1995] Zhang, B. and
Mühlenbein, H. 1995. Balancing Accuracy and

Parsimony in Genetic Programming. Evolutionary
Computation, 3(1):17-38.

